Reductions

Reduction: Problem A reduces to Problem B if, given a “black box” (subroutine) for B, one can solve A using a (polynomial) number of calls to the subroutine.

Trivial Example:

- B is addition – $B(x, y) = x + y$
- A multiplication by 3.
- A reduces to B because we can multiply by 3: $A(z) = B(z, B(z, z))$.
More Reduction Examples

• A is max flow, B is linear programming
• A is $1||\sum C_j$, B is $1||\sum w_jC_j$
• A is $P||C_{\text{max}}$, B is $P|\text{prec}|\sum w_jC_j$
Reductions for NP-completeness

• For technical reasons, we will only consider decision versions of problems.

• e.g. $P||C_{\text{max}}$; Given m machines, n jobs and a number B, does the optimal schedule have makespan less than B.

• e.g. Shortest Paths: Given a graph G with weights on the edges, two distinguished vertices s and t and a number B, is the shortest path from s to t of length less than B.

• The decision version and the optimization version of a problem are “equivalent,” that is they each reduce to each other.
Reduction Example

Vertex Cover A vertex cover of a graph \(G=(V,E) \) is a set of vertices \(V' \), such that for every edge \((x,y) \), at least one of \(x \) and \(y \) is in \(V' \). The vertex cover problem is given a graph \(G \) and a number \(k \) and asks whether \(G \) has a vertex of size at most \(k \).

Clique A clique is a set of vertices such that each pair of vertices has an edge between them. The clique problem is given a graph and a number \(ℓ \) and asks when a graph has a clique of size at least \(ℓ \).

Question: Show that vertex cover reduces to clique.