Tanker Scheduling

Ships have:
- capacity
- draught (minimum depth to float)
- range of speeds and fuel consumption
- location and available time

Ports have:
- weight limits
- draught
- other physical restrictions
- government restrictions
Cargo has

- type
- load port
- destination port
- time constraints
- load and unload times

A company will own ships and may rent ships. It is more expensive to rent ships.

Objective: minimize cost

- operating costs for company ships
- charter rates
- fuel costs
- port charges
Formulation

Notation:
Parameters

- n - number of cargoes
- T - number of company owned tankers
- p - number of ports

plus data for all of the above.

Compute

- S_i - the set of possible schedules for ship i. $a_{ij}^l = 1$ if under schedule l ship i transports cargo j.
- c_j^* is amount paid to transport cargo j on a ship that is not company owned.
- c_i^l - incremental cost of operating a company-owned ship i under schedule l versus keeping ship i idle.

Compute the profit for operationg ship i according to schedule l as $\pi_i^l = \sum_{j=1}^n a_{ij}^l c_j^* - c_i^l$.
Decision variable:
\[x_i^l \] if ship \(i \) follows schedule \(l \).

Formulation

\[
\text{maximize} \quad \sum_{i=1}^{T} \sum_{l \in S_i} \pi_i^l x_i^l \\
\text{subject to} \\
\sum_{i=1}^{T} \sum_{l \in S_i} a_{ij}^l x_i^l \leq 1 \quad j = 1, \ldots, n \\
\sum_{l \in S_i} x_i^l \leq 1 \quad i = 1, \ldots, T \\
x_i^l \in \{0, 1\} \quad l \in S_i, i = 1, \ldots, T
\]

Solution Set packing. Use branch and bound.
Example

• 3 ships
• 12 cargoes

Analysis of the data show that each of the ships has five feasible schedules:

Schedules	\(a_{1j} \)	\(a_{2j} \)	\(a_{3j} \)	\(a_{4j} \)	\(a_{5j} \)	\(a_{1j} \)	\(a_{2j} \)	\(a_{3j} \)	\(a_{4j} \)	\(a_{5j} \)	\(a_{1j} \)	\(a_{2j} \)	\(a_{3j} \)	\(a_{4j} \)	\(a_{5j} \)		
cargo 1	1	0	0	1	1	0	1	0	0	0	0	0	0	0	0	1	0
cargo 2	1	0	0	0	0	1	0	0	0	0	0	1	0	1	1		
cargo 3	0	0	1	0	1	0	0	0	1	1	0	0	0	0	0		
cargo 4	0	1	1	1	0	1	0	1	0	0	0	0	0	0	0		
cargo 5	1	1	0	0	0	0	0	0	1	0	0	0	1	0	1		
cargo 6	0	0	0	1	1	0	1	0	0	1	1	0	0	0	0		
cargo 7	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	
cargo 8	0	1	0	0	0	0	1	0	1	1	1	0	0	0	0		
cargo 9	0	0	1	0	0	0	1	0	0	1	1	1	1	1	0		
cargo 10	0	1	0	0	0	1	0	0	0	0	1	1	0	0	0		
cargo 11	0	0	0	0	0	0	1	1	0	0	0	1	1	1	0		
cargo 12	0	0	0	1	0	0	0	0	0	1	0	1	1	1	1		
Costs

Charter cost (CC) for transporting a particular cargo by charter:

<table>
<thead>
<tr>
<th>Cargo</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>1429</td>
<td>1323</td>
<td>1208</td>
<td>512</td>
<td>2173</td>
<td>2217</td>
<td>1775</td>
<td>1885</td>
<td>2468</td>
<td>1928</td>
<td>1634</td>
<td>741</td>
</tr>
</tbody>
</table>

Operating costs of the tankers under each one of the schedules is also given:

<table>
<thead>
<tr>
<th>Schedule</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>cost of tanker 1 (c_1)</td>
<td>5608</td>
<td>5033</td>
<td>2722</td>
<td>3505</td>
<td>3996</td>
</tr>
<tr>
<td>cost of tanker 2 (c_2)</td>
<td>4019</td>
<td>6914</td>
<td>4693</td>
<td>7910</td>
<td>6866</td>
</tr>
<tr>
<td>cost of tanker 3 (c_3)</td>
<td>5829</td>
<td>5588</td>
<td>82824</td>
<td>3338</td>
<td>4715</td>
</tr>
</tbody>
</table>

We can compute the profit for each schedule

<table>
<thead>
<tr>
<th>Schedule</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>profit of tanker 1 (π_1)</td>
<td>-683</td>
<td>1465</td>
<td>1466</td>
<td>1394</td>
<td>858</td>
</tr>
<tr>
<td>profit of tanker 2 (π_2)</td>
<td>1629</td>
<td>834</td>
<td>1113</td>
<td>-869</td>
<td>910</td>
</tr>
<tr>
<td>profit of tanker 3 (π_3)</td>
<td>1525</td>
<td>1765</td>
<td>-1268</td>
<td>1789</td>
<td>1297</td>
</tr>
</tbody>
</table>
Now we can give an IP

\[
\text{maximize} \quad -733x_1^1 + 1465x_1^2 + 1466x_1^3 + 1394x_1^4 + 858x_1^5 \\
+1629x_2^1 + 834x_2^2 + 1113x_2^3 + -869x_2^4 + 910x_2^5 \\
+1525x_3^1 + 1765x_3^2 + -1268x_3^3 + 1789x_3^4 + 1297x_3^5
\]

subject to
\[
\begin{align*}
x_1^1 + x_1^4 + x_1^5 + x_2^1 + x_3^1 & \leq 1 \\
x_1^1 + x_2^2 + x_3^2 + x_3^4 + x_3^5 & \leq 1 \\
x_1^3 + x_1^5 + x_2^4 + x_2^5 & \leq 1 \\
x_1^2 + x_1^3 + x_1^4 + x_1^2 + x_2^3 & \leq 1 \\
x_1^1 + x_1^2 + x_1^4 + x_3^3 + x_3^5 & \leq 1 \\
x_1^4 + x_1^1 + x_2^2 + x_2^4 + x_3^1 & \leq 1 \\
x_1^3 + x_2^4 + x_2^5 & \leq 1 \\
x_1^2 + x_2^1 + x_2^3 + x_2^4 + x_2^5 & \leq 1 \\
x_1^3 + x_2^2 + x_2^5 + x_3^1 + x_3^2 + x_3^3 & \leq 1 \\
x_1^2 + x_2^1 + x_3^1 + x_3^2 & \leq 1 \\
x_2^2 + x_3^3 + x_3^2 + x_3^4 & \leq 1 \\
x_1^4 + x_3^1 + x_3^3 + x_3^4 + x_3^5 & \leq 1 \\
x_1^1 + x_1^2 + x_3^1 + x_3^4 + x_3^5 & \leq 1 \\
x_2^1 + x_2^2 + x_3^3 + x_3^4 + x_5^5 & \leq 1 \\
x_1^1 + x_1^1 + x_1^3 + x_1^4 + x_1^5 & \leq 1 \\
x_2^1 + x_2^2 + x_2^3 + x_3^4 + x_5^5 & \leq 1
\end{align*}
\]
Optimal solution Schedule 3 for ship 1, schedule 4 for ship 3. Ship 2
remains idle. Cargoes 5,6,7,8,10 are transported by charters. Value =
3255.
Train timetabling

- One track with many stations (think 1/9 subway line or commuter rail).
- Trains can pass at stations but not between stations.
- Stations are numbered 0 to L.
- Tracks are numbered 1 to $L + 1$.
- Track i connects station $j - 1$ with j.
- Time is measured in minutes (1 to 1440).
- You are given preferred arrival, departure, travel, and holdover times for each train at each station.
- There is a piecewise linear function measuring the cost (lost revenue) of deviating from the desired time.
The desired arrival time is 800. The graph shows the cost as a function of time, with a minimum cost between 780 and 800.
IP

Variables

• \(y_{ij} = \) time train \(i \) enters link \(j \) (leaves station \(j - 1 \))
• \(z_{ij} = \) time train \(i \) exits line \(j \) (arrives at station \(j \))

We compute

• \(\tau_{ij} = z_{ij} - y_{ij} \) (travel time of train \(i \) in link \(j \))
• \(\delta_{ij} = y_{i,j+1} - z_{ij} \) (dwelling time of train \(i \) in station \(j \))

We are given costs for each of these quantities:

• \(c_{ij}^a(z_{ij}) \) - costs for train \(i \) arriving at station \(j \)
• \(c_{ij}^d(y_{ij}) \) - costs for train \(i \) departing from station \(j \)
• \(c_{ij}^\tau(\tau_{ij}) \) - costs for travel time of train \(i \) in link \(j \)
• \(c_{ij}^\delta(\delta_{ij}) \) - costs for travel time of train \(i \) dwelling in station \(j \).

Each of these costs is piecewise linear, and we are given min and max values. Also, minimum and maximum headway values \(H \)

\[T \] is the set of possible trains.

Variable: \(x_{hij} = 1 \) is train \(h \) immediately precedes train \(i \) on link \(j \).
\begin{align*}
\text{minimize} & \quad \sum_{i \in T} \sum_{j=1}^{L} \left(c_{ij}^a(z_{ij}) + c_{ij-1}^d(y_{ij}) + c_{ij}^\tau(\tau_{ij}) \right) + \sum_{i \in T} \sum_{j=1}^{L-1} \left(c_{ij}^\delta(\delta_{ij}) \right) \\
\text{subject to} & \\
& \quad y_{ij} \geq y_{ij}^\text{min} \quad i \in T, j = 1, \ldots, L \\
& \quad y_{ij} \leq y_{ij}^\text{max} \quad i \in T, j = 1, \ldots, L \\
& \quad z_{ij} \geq z_{ij}^\text{min} \quad i \in T, j = 1, \ldots, L \\
& \quad z_{ij} \leq z_{ij}^\text{max} \quad i \in T, j = 1, \ldots, L \\
& \quad \tau_{ij} = z_{ij} - y_{ij} \quad i \in T, j = 1, \ldots, L \\
& \quad \tau_{ij} \geq \tau_{ij}^\text{min} \quad i \in T, j = 1, \ldots, L \\
& \quad \tau_{ij} \leq \tau_{ij}^\text{max} \quad i \in T, j = 1, \ldots, L \\
& \quad \delta_{ij} = y_{i,j+1} - z_{ij} \quad i \in T, j = 1, \ldots, L \\
& \quad \delta_{ij} \geq \delta_{ij}^\text{min} \quad i \in T, j = 1, \ldots, L - 1 \\
& \quad \delta_{ij} \leq \delta_{ij}^\text{max} \quad i \in T, j = 1, \ldots, L - 1 \\
& \quad y_{i,j+1} - y_{h,j+1} + (1 - x_{hij})M \geq H_{hij}^d \quad i \in T, j = 1, \ldots, L \\
& \quad z_{ij} - z_{hj} + (1 - x_{hij})M \geq H_{hij}^a \quad i \in T, j = 1, \ldots, L \\
& \quad \sum_{h \in \{T-i\}} x_{hij} = 1 \quad i \in T, j = 1, \ldots, L \\
& \quad x_{hij} \in \{0, 1\}
\end{align*}
Solution

Can solve using heuristic similar to shifting bottleneck heuristic. Set one train (by importance) and resolve LP relaxation.