Multiple Machines

- Model Multiple Available resources
- people
- time slots
- queues
- networks of computers
- Now concerned with both allocation to a machine and ordering on that machine.

$P \| C_{\text {max }}$

NP-complete from partition.

Example	
j	p_{j}
1	10
2	8
3	6
4	4
5	2
6	1

- What is the makespan on 2 machines?
- 3 machines ?
- 4 machines ?

Approxmiation Algorithms

- Cannot come up with an optimal solution in polynomial time
- Will look at relative error : $C_{\max }($ our algorithm $) / C_{\max }(O P T)$
- Challenges:
- Our algorithm's performance is different on different instances
- We can't compute $C_{\max }(O P T)$

Approxmiation Algorithms

- Cannot come up with an optimal solution in polynomial time
- Will look at relative error : $C_{\max }$ (our algorithm) $/ C_{\max }(O P T)$
- Challenges:
- Our algorithm's performance is different on different instances
- We can't compute $C_{\max }(O P T)$

Solution:

- We will use a worst case measure on performance
- We will use a lower bound on $C_{\max }(O P T)$

Approximation Algorithms

An algorithm A is a ρ approximation algorithm for a problem, if for all inputs

$$
\frac{C_{\max }(A)}{C_{\max }(O P T)} \leq \rho
$$

In addition, A must run in polynomial time.

We can't compute $C_{\max }(O P T)$.
Recipe:

- Instead, we compute a lower bound $L B(O P T)$, such that
- $L B(O P T)$ is easy to compute
$-L B(O P T) \leq C_{\max }(O P T)$.
- We then show that $C_{\max }(A) \leq \rho L B(O P T)$.

Combining the previous two steps, we have:

$$
C_{\max }(A) \leq \rho L B(O P T) \leq \rho C_{\max }(O P T)
$$

which can be rewritten as

$$
\frac{C_{\max }(A)}{C_{\max }(O P T)} \leq \rho
$$

Notes:

- Must come up with a good lower bound
- Can replace $C_{\max }$ with any objective.

Lower Bounds for $P \| C_{\max }$

- Average load
- Longest job

Lower Bounds for $P \| C_{\max }$

- Average load - $\left\lceil\Sigma p_{j} / m\right\rceil$
- Longest job $-p_{\max }=\max _{j}\left\{p_{j}\right\}$

List Scheduling Algorithm

A Greedy Algorithm

1. Make a list of the jobs (in any order)
2. When a machine becomes available, schedule the next job on the list.

List Scheduling Algorithm

A Greedy Algorithm

1. Make a list of the jobs (in any order)
2. When a machine becomes available, schedule the next job on the list.

List Scheduling Algorithm

A Greedy Algorithm

1. Make a list of the jobs (in any order)
2. When a machine becomes available, schedule the next job on the list.

Analysis

- Let t be the last time at which all machines are busy.
- $t \leq \Sigma_{j} p_{j} / m$
- $C_{\max } \leq t+p_{\max } \leq \Sigma_{j} p_{j} / m+p_{\max }$.

Put this together with our lower bound:

$$
C_{\max } \leq t+p_{\max } \leq \sum_{j} p_{j} / m+p_{\max } \leq 2 L B \leq 2 O P T
$$

Improved Algorithm

- Schedule length is average load plus last job.
- When last job is small, the schedule is shorter.
- Force last job to be small - LPT (Longest Processing Time).

LPT is a $4 / 3$-approximation for $P \| C_{\max }$.

Proof Outline

- If last job is small ($\leq 1 / 3 O P T$) then $\mathbf{4} / \mathbf{3}$-approximation
- Otherwise, there are at most 2 jobs per machine and LPT is optimal.

Even better algorithms are possible: . A polynomial-time approximation scheme (PTAS) is an algorithm that, given fixed $\epsilon>0$, returns at $(1+\epsilon)$ -approximation in polynomial time. The running time can have a bad dependence on ϵ, such as $n^{O(1 / \epsilon)}$.
$P \| C_{\text {max }}$ has a PTAS.

Precedence Constraints

- $P \infty \mid$ prec $\mid C_{\text {max }}$ is known as project scheduling.
- $P|\operatorname{prec}| C_{\text {max }}$ has a 2-approximation.

What are good lower bounds for $P|\operatorname{prec}| C_{\max }$?

Precedence Constraints

- $P \infty \mid$ prec $\mid C_{\text {max }}$ is known as project scheduling.
- $P \mid$ prec $\mid C_{\text {max }}$ has a 2-approximation.

What are good lower bounds for $P|\operatorname{prec}| C_{\max }$?

- Average load
- $p_{\text {max }}$
- any path in the precedence graph
- the critical path is the longest path in the precedence graph.

Unit Processing Times

$P\left|p_{j}=1, \operatorname{prec}\right| C_{\max }$ is NP-hard.

Heuristics

- Critical Path (CP) rule
- The job at the head of the longest string of jobs in the constraint graph has the highest priority
$-P \mid p_{j}=1$, tree $\mid C_{\max }$ is solved by CP.
- Largest Number of Successors First (LNS)
- The job with the largest total number of successors in the constraint graph has highest priority.
- For in-trees and chains, LNS is identical to CP
- LNS is also optimal for $P \mid p_{j}=1$, outtree $\mid C_{\text {max }}$
- Generalization to arbitrary processing times is possible

Fixed Number of Processors

- $P 2\left|p_{j}=1, \operatorname{prec}\right| C_{\text {max }}$ is solvable in polynomial time
- $P 3\left|p_{j}=1, \operatorname{prec}\right| C_{\text {max }}$ is a big open question.

Preemptions: $P \mid$ pmtn $\mid C_{\text {max }}$

- McNaughton's wrap-around rule is optimal.

Example	
j	p_{j}
A	7
B	10
C	1
D	4
E	9

LP for $P \mid$ pmtn $\mid C_{\max }$

Variables: $x_{i j}$ is the time that job j runs on machine $i . C_{\max }$ is also a variable.

Constraints

- Each job runs for p_{j} units of time
- Each machine runs for at most $C_{\max }$ time.
- $C_{\max }$ is more than any processing time.

$$
\begin{align*}
& \min C_{\max } \tag{1}\\
& \text { s.t. } \tag{2}\\
& \sum_{i=1}^{m} x_{i j}=p_{j} \tag{3}\\
& j=1 \ldots n \tag{4}\\
& \sum_{j=1}^{n} x_{i j} \leq C_{\max } \tag{5}\\
& i=1 \ldots m \\
& \sum_{i=1}^{m} x_{i j} \leq C_{\max } j=1 \ldots n
\end{align*}
$$

Note that LP only assigns pieces of jobs to machines. Need to also assign jobs to times.

Machines with speeds $-Q|\operatorname{pmtn}| C_{\max }$

- Machines M_{1}, \ldots, M_{m} with speeds v_{1}, \ldots, v_{m}.
- Assume wlog that $v_{1} \geq v_{2} \geq v_{m}$
- Assume wlog that $p_{1} \geq p_{2} \geq p_{n}$
- If a job runs for one unit of time on machine M_{i}, it uses up v_{i} units of processing.
- If job j runs on machine M_{i}, then it takes p_{j} / v_{i} time units to complete.

Example
j p_{j}
A 20
B 16
C 2
D 1
What are the lower bounds

Lower bounds for $Q \mid$ pmtn $\mid C_{\max }$

- What is the analog of $p_{\max }$?
- What is the analog of average load?
- Are there others ?

Lower bounds for $Q|\operatorname{pmtn}| C_{\max }$

- What is the analog of $p_{\max }$? $-p_{1} / v_{1}$
- What is the analog of average load ? - $\Sigma p_{j} / \Sigma v_{i}$
- Are there others ? - Yes

General Lower Bound

$$
C_{\max } \geq \max \left(\frac{p_{1}}{v_{1}}, \frac{p_{1}+p_{2}}{v_{1}+v_{2}}, \ldots, \frac{\sum_{j=1}^{m-1} p_{j}}{\sum_{i=1}^{m-1} v_{i}}, \frac{\sum_{j=1}^{n} p_{j}}{\sum_{i=1}^{m} v_{i}}\right)
$$

Lower Bound

$$
C_{\max } \geq \max \left(\frac{p_{1}}{v_{1}}, \frac{p_{1}+p_{2}}{v_{1}+v_{2}}, \ldots, \frac{\sum_{j=1}^{m-1} p_{j}}{\sum_{i=1}^{m-1} v_{i}}, \frac{\sum_{j=1}^{n} p_{j}}{\sum_{i=1}^{m} v_{i}}\right)
$$

What is the lower bound for our example?
Can we achieve this lower bound?

LRPT-FM

Longest Remaining Processing Time on Fastest Machines

Example 1
$j \quad p_{j}$
A 20
B 16
C 2
D 1

$$
v=(4,2,1)
$$

Example 2
$j \quad p_{j}$
A 20
B 16
C 12
D 1

Notes:

- LRPT-FM is optimal in continuous time
- LRPT-FM is near otimal in discrete time, for small time steps.

