Multiple Machines

- Model Multiple Available resources
 - people
 - $-\operatorname{time\ slots}$
 - queues
 - networks of computers
- Now concerned with both allocation to a machine and ordering on that machine.

$P||C_{\max}|$

NP-complete from partition.

Example

- $j \quad p_j$
- 1 10
- 2 8
- 3 6
- 4 4
- **5** 2
- **6** 1
- What is the makespan on 2 machines?
- 3 machines ?
- 4 machines ?

Approxmiation Algorithms

- Cannot come up with an optimal solution in polynomial time
- Will look at relative error : $C_{\max}(\text{our algorithm})/C_{\max}(OPT)$
- Challenges:
 - Our algorithm's performance is different on different instances
 - We can't compute $C_{\max}(OPT)$

Approxmiation Algorithms

- Cannot come up with an optimal solution in polynomial time
- Will look at relative error : $C_{\max}(\text{our algorithm})/C_{\max}(OPT)$
- Challenges:
 - Our algorithm's performance is different on different instances
 - We can't compute $C_{\max}(OPT)$

Solution:

- We will use a worst case measure on performance
- We will use a lower bound on $C_{\max}(OPT)$

Approximation Algorithms

An algorithm A is a ρ approximation algorithm for a problem, if for all inputs

$$\frac{C_{\max}(A)}{C_{\max}(OPT)} \le \rho$$

In addition, A must run in polynomial time.

```
We can't compute C_{\max}(OPT) .
```

Recipe:

 \bullet Instead, we compute a lower bound $\ LB(OPT)$, such that

- -LB(OPT) is easy to compute
- $\, LB(OPT) \leq C_{\max}(OPT)$.
- \bullet We then show that $\ C_{\max}(A) \leq \rho LB(OPT)$.

Combining the previous two steps, we have:

 $C_{\max}(A) \le \rho LB(OPT) \le \rho C_{\max}(OPT)$

which can be rewritten as

 $\frac{C_{\max}(A)}{C_{\max}(OPT)} \le \rho$

Notes:

٠

- Must come up with a good lower bound
- Can replace C_{max} with any objective.

Lower Bounds for $P||C_{\max}$

- Average load
- Longest job

Lower Bounds for $P||C_{\max}$

- Average load $\lceil \sum p_j / m \rceil$
- Longest job $p_{\max} = \max_{j} \{p_j\}$

List Scheduling Algorithm

A Greedy Algorithm

- 1. Make a list of the jobs (in any order)
- 2. When a machine becomes available, schedule the next job on the list.

List Scheduling Algorithm

A Greedy Algorithm

- 1. Make a list of the jobs (in any order)
- 2. When a machine becomes available, schedule the next job on the list.

List Scheduling Algorithm

A Greedy Algorithm

- 1. Make a list of the jobs (in any order)
- 2. When a machine becomes available, schedule the next job on the list.

Analysis

- Let t be the last time at which all machines are busy.
- $t \leq \sum_j p_j/m$
- $C_{\max} \le t + p_{\max} \le \sum_j p_j / m + p_{\max}$.

Put this together with our lower bound:

$$C_{\max} \le t + p_{\max} \le \sum_{j} p_j / m + p_{\max} \le 2LB \le 2OPT$$

Improved Algorithm

- Schedule length is average load plus last job.
- When last job is small, the schedule is shorter.
- Force last job to be small LPT (Longest Processing Time).

LPT is a 4/3-approximation for $P||C_{max}$.

Proof Outline

- If last job is small ($\leq 1/3OPT$) then 4/3-approximation
- Otherwise, there are at most 2 jobs per machine and LPT is optimal.

Even better algorithms are possible: A polynomial-time approximation scheme (PTAS) is an algorithm that, given fixed $\epsilon > 0$, returns at $(1 + \epsilon)$ -approximation in polynomial time. The running time can have a bad dependence on ϵ , such as $n^{O(1/\epsilon)}$.

 $P||C_{\max}$ has a PTAS.

Precedence Constraints

- $P\infty$ prec C_{max} is known as project scheduling.
- $P|\text{prec}|C_{\text{max}}$ has a 2-approximation.

What are good lower bounds for $P|\text{prec}|C_{\text{max}}$?

Precedence Constraints

- $P\infty$ prec C_{max} is known as project scheduling.
- $P|\text{prec}|C_{\text{max}}$ has a 2-approximation.

What are good lower bounds for $P|\text{prec}|C_{\text{max}}$?

- Average load
- p_{\max}
- any path in the precedence graph
- the critical path is the longest path in the precedence graph.

Unit Processing Times

 $P|p_j = 1, \text{prec}|C_{\text{max}}$ is **NP-hard.**

Heuristics

- Critical Path (CP) rule
 - The job at the head of the longest string of jobs in the constraint graph has the highest priority
 - $-P|p_j = 1, tree|C_{\max}$ is solved by CP.
- Largest Number of Successors First (LNS)
 - The job with the largest total number of successors in the constraint graph has highest priority.
 - For in-trees and chains, LNS is identical to CP
 - LNS is also optimal for $P|p_j = 1, outtree|C_{max}$
- Generalization to arbitrary processing times is possible

Fixed Number of Processors

- $P2|p_j = 1$, prec $|C_{\text{max}}|$ is solvable in polynomial time
- $P3|p_j = 1$, prec $|C_{\text{max}}|$ is a big open question.

Preemptions: $P|\text{pmtn}|C_{\text{max}}$

• McNaughton's wrap-around rule is optimal.

Example

- *j p_j* **A** 7 **B** 10 **C** 1 **D** 4
- E 9

LP for $P|\text{pmtn}|C_{\text{max}}$

 x_{ij} is the time that job j runs on machine i . C_{\max} is also Variables: a variable.

Constraints

- Each job runs for p_j units of time
- Each machine runs for at most C_{max} time.
- C_{max} is more than any processing time.

$$\min C_{\max} \tag{1}$$

$$s.t.$$

$$\sum_{i=1}^{m} x_{ij} = p_j \qquad j = 1 \dots n \tag{3}$$

$$\sum_{j=1}^{n} x_{ij} \le C_{\max} \quad i = 1 \dots m \tag{4}$$

$$\sum_{i=1}^{m} x_{ij} \le C_{\max} \quad j = 1 \dots n \tag{5}$$

(6)

Note that LP only assigns pieces of jobs to machines. Need to also assign jobs to times.

Machines with speeds $-Q|pmtn|C_{max}$

- Machines M_1, \ldots, M_m with speeds v_1, \ldots, v_m .
- Assume wlog that $v_1 \ge v_2 \ge v_m$
- Assume wlog that $p_1 \ge p_2 \ge p_n$
- If a job runs for one unit of time on machine M_i , it uses up v_i units of processing.
- If job j runs on machine M_i , then it takes p_j/v_i time units to complete.

Example

- $\begin{array}{ccc} j & p_j \\ \mathbf{A} & \mathbf{20} \end{array}$
- B 16
- **C** 2
- D 1

What are the lower bounds

Lower bounds for $Q|pmtn|C_{max}$

- What is the analog of p_{max} ?
- What is the analog of average load ?
- Are there others ?

Lower bounds for $Q | pmtn | C_{max}$

- What is the analog of p_{max} ? p_1/v_1
- What is the analog of average load ? $-\sum p_j/\sum v_i$
- Are there others ? Yes

General Lower Bound

$$C_{\max} \ge \max\left(\frac{p_1}{v_1}, \frac{p_1 + p_2}{v_1 + v_2}, \dots, \frac{\sum_{j=1}^{m-1} p_j}{\sum_{i=1}^{m-1} v_i}, \frac{\sum_{j=1}^n p_j}{\sum_{i=1}^m v_i}\right)$$

Lower Bound

$$C_{\max} \ge \max\left(\frac{p_1}{v_1}, \frac{p_1 + p_2}{v_1 + v_2}, \dots, \frac{\sum_{j=1}^{m-1} p_j}{\sum_{i=1}^{m-1} v_i}, \frac{\sum_{j=1}^n p_j}{\sum_{i=1}^m v_i}\right)$$

What is the lower bound for our example?

Can we achieve this lower bound?

$\underline{\mathbf{LRPT}}$

Longest Remaining Processing Time on Fastest Machines

Example 1

- j p_j
- A 20
- B 16
- **C** 2
- D 1

v = (4, 2, 1)

Example 2

- j p_j
- A 20
- B 16
- C 12
- D 1

Notes:

- LRPT-FM is optimal in continuous time
- LRPT-FM is near otimal in discrete time, for small time steps.