Scheduling Notation

We will give the typical notation used in the course

<u>Jobs</u>

- Number: n
- Typical Index: *j*
- Features:
 - -processing time: p_j or p_{ij}
 - release date: r_j
 - deadline or due date: d_j
 - weight w_j

Machines

- Number: m
- Typical Index: *i*
- Possible Environments:
 - * 1 : one machine
 - * P,Pm: parallel (identical machines)
 - * Q,Qm: related machines (different speeds)
 - * **R**,**R**m: unrelated machines (processing time depends on job and machine)
 - * Shop Environments
 - \cdot J: job shop each job has linear constraints among its task
 - \cdot F: flow shop each job has the same linear constraints among its task
 - \cdot O: open shop no constraints among tasks

Constraints

We give some examples here:

- $-r_j$: release date
- **pmtn:** preemption
- prec: precedence constraints
- $-s_{jk}$: sequence dependent set up times
- **bkdwn:** machines may breakdown
- **block:** limited buffer size

Objectives

- A schedule designates which job runs on which machine at each time. It therefore assigns a completion time C_i to each job j
- We evaluate a job by some function of C_j and the other parameters of job, e.g.
 - * Lateness: $L_j = C_j d_j$
 - * Tardiness: $T_j = \max\{L_j, 0\}$
 - * Unit Cost: $U_j = 1$ if $C_j > d_j$ and 0 otherwise
 - * Flow (Response) Time: $F_j = C_j r_j$
 - * Idle Time: $I_j = C_j r_j p_j$
 - * Stretch: $S_j = (C_j r_j)/p_j$
- We then evaluate a schedule by some function of the job functions, usually a minimization of a

* sum

- * weighted sum
- * discounted weighted sum
- * maximum (We use X_{max} as shorthand for $\max_j X_j$).

3 field notation

- \bullet machines constraints objective
- Default is no preemption Examples:
 - $-P||C_{\max}$ parallel identical machines, minimize the schedule length (makespan)
 - $-1|\text{prec}, \text{pmtn}| \sum w_j C_j$ one machine, precedence constraints and preemption, minimize the sum of weighted completion times
 - $-P\infty|\mathrm{prec}|C_{\mathrm{max}}|$ project scheduling
 - -Jm|nowait| C_{max} nowait job shop scheduling, minimize makespan
 - $1 |\text{pmtn}| \sum w_j T_j \;$ one machine, preemption, minimum weighted tardiness