Average Completion Time on Multiple Machines

$P \Sigma C_j$				
j	p_j			
A	1			
В	3			
\mathbf{C}	4			
D	5			
\mathbf{E}	6			
\mathbf{F}	9			
G	12			
Η	20			
Ι	50			
\mathbf{J}	60			

What is the right algorithm?

Average Completion Time on Multiple Machines

- $P|| \Sigma C_J SPT$ is optimal.
- $P|| \sum w_j C_j$ Is WSPT optimal?

Example

Average Completion Time on Multiple Machines

- $P|| \sum C_J$ SPT is optimal.
- $P|| \sum w_j C_j$ Is WSPT optimal?

Example

- $P|| \sum w_j C_j$ is NP-complete.
- WSPT is a $(1 + \sqrt{2})/2$ -approximation for $P || \sum w_j C_j$

$|R|| \operatorname{S} C_j$

- Can be solved as a matching problem.
- Left side node for each job j
- Right hand side node for the k th from last job on machine i

Example

	J_1	J_2	J_3	J_4
M_1	6	4	∞	3
M_2	7	5	2	3
M_3	3	8	5	3

LP for the matching problem

Variable $x_{ijk} = 1$ if j is the k th from last job on M_i

$$\begin{split} \min \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{n} k p_{ij} x_{ijk} \\ \textbf{s.t.} \\ \textbf{Each job runs} \\ \sum_{i=1}^{m} \sum_{k=1}^{n} x_{ijk} = 1 \qquad \qquad j = 1 \dots n \\ \textbf{Each machine/slot has at most 1 job} \\ \sum_{j=1}^{n} x_{ijk} \leq 1 \qquad \qquad i = 1 \dots m; k = 1 \dots n \\ x_{ijk} \in \{0, 1\} \quad i = 1 \dots m; j = 1 \dots n; k = 1 \dots n \end{split}$$

• Note that the may be unforced idleness e.g.

 $\begin{array}{cccc} & J_1 & J_2 \\ M_1 & {\bf 1} & {\bf 1} \\ M_2 & {\bf 10} & {\bf 10} \end{array}$

$Q|\text{pmtn}| \Sigma C_j$

- Algorithm is SRPT-FM. Shortest Remaining Processing Time on the Fastest Machines.
- What about preemption in other models?
- \bullet P doesn't help
- $\bullet \ R NP\text{-complete}$