Shop Scheduling

Applications

- Model Factory-like Settings
- Also models packet routing
- ...

Basic Model: Multiple machines. A jobs consist of operations, each operations has a

- processing time p_{ij}
- Machine on which to run M_{ij}

Variants of Shop Scheduling

Basic Types

- Job shop. Each job consist of operations in a linear order
- Flow shop. Job shop, but the linear order is the same for each job. (assembly line)
- Open shop. Each job consists of unordered operations.

Other Constraints

- time between operations
 - minimum time (e.g. cooling)
 - maximum time (e.g. hot potato)
- setup at machines (e.g. paint color)
- limited storage between machines

$F||C_{\max}|$

First Question: Is it optimal to have each job go through the machines in the same order? (permutation schedule)

2 machines. Permutation schedule is optimal.

Example

 $\begin{array}{c|cccc} j & p_{1j} & p_{2j} \\ \hline 1 & 3 & 6 \\ \hline 2 & 10 & 1 \\ \hline 3 & 3 & 2 \\ \hline 4 & 2 & 4 \\ \hline 5 & 8 & 8 \end{array}$

What is the right algorithm?

SPT(I)- LPT(II)

Example

j	p_{1j}	p_{2j}
1	3	6
2	10	1
3	3	2
4	2	4
5	8	8

Algorithm:

- Partition into two sets:
 - $\, {
 m Set} \, {
 m I} \, {
 m has} \, \, p_{1j} \leq p_{2j} \, \, (1,4,5)$
 - ${
 m Set \ II \ has} \ \ p_{1j} > p_{2j} \ \ (2,3)$
- Run Set I in SPT order by p_{1j}
- Run Set II in LPT order by p_{2j}

For this problem: 4,1,5,3,2

Can use interchange arguments to show that this is optimal

- Set I before Set II
- Set I in SPT order
- Set II in LPT order.

More general flow shop

- 3 machines. There is an optimal permutations schedule.
- 4 machines. Optimal schedule may not be a permutation schedule.

$F|\mathbf{perm}|C_{\max}$ as a mixed integer program

Decision variables: $x_{jk} = 1$ if job j is k th in sequence

Extra Variables:

- I_{ik} : idle time on machine *i* between jobs in positions *k* and k+1.
- W_{ik} : waiting time of job in position k between machines i and i+1.

Ideas

- Makespan is sum of
 - Processing time of first job on all machines
 - processing time of all jobs on machine m
 - Idle time on machine m
- Matching constraints to ensure that each job is in one position and each position has one job
- Relationship between idle time and waiting time constraints.
- Way to map variables so you can talk about k th job to run, rather than job indexed by j.

MIP

Processing time of k th job to run on machine i:

$$p_{i(k)} = \sum_{j=1}^{n} x_{jk} p_{ij}$$

Objective

٠

$$\sum_{i=1}^{m-1} p_{i(1)} + \sum_{j=1}^{n} p_{mj} + \sum_{j=1}^{n-1} I_m j$$

Matching Constraints

$$\sum_{j=1}^{n} x_{jk} = 1 \quad k = 1 \dots n$$
$$\sum_{k=1}^{n} x_{jk} = 1 \quad j = 1 \dots n$$

Constraints relating idle and waiting time

$$I_{ik} + p_{i(k+1)} + W_{i,k+1} = W_{ik} + p_{i+1(k)} + I_{i+1,k} \quad \forall k, i$$

$$W_{i1} = 0 \forall i, \quad I_{1k} = 0 \forall k$$

Other Facts

- $F3||C_{\text{max}}$ is NP-complete.
- $F3|\mathbf{perm}|C_{\max}$ is NP-complete.
- Easy case: all operations are the same size. Then flowshop with many objectives is easy.

Slope Heuristic

Motivation: Think about SPT(I)-LPT(II).

- Early jobs should be small on M_1 and large on M_2 .
- Late jobs should be large on M_1 and small on M_2 .
- Generalize to "slope". Larger slope should go earlier.
- Slope $A_j = -\sum_{i=1}^m (m (2i 1))p_{ij}$

Exampl	\mathbf{e}

	J_1	J_2	J_3	J_4	J_5
M_1	5	5	3	6	3
M_2	4	4	2	4	4
M_3	4	4	3	4	1
$ \begin{array}{c} M_1 \\ M_2 \\ M_3 \\ M_4 \end{array} $	3	6	3	2	5

Example

Example

	J_1	J_2	J_3	J_4	J_5
M_1	5	5	3	6	3
M_2	4	4	2	4	4
M_3	4	4	3	4	1
$egin{array}{c} M_1\ M_2\ M_3\ M_4 \end{array}$	3	6	3	2	5

Example:Compute Slopes

	J_1	J_2	J_3	J_4	J_5
M_1	5	5	3	6	3
M_2	4	4	2	4	4
M_3	4	4	3	4	1
M_4	3	6	3	2	5
A_j	-6	3	1	-12	3