Minimizing the Number of Tardy Jobs

1|| $\sum U_j$

Example

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>j</td>
<td>p_j</td>
<td>d_j</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>20</td>
</tr>
</tbody>
</table>

Ideas:

- Need to choose a subset of jobs S that meet their deadlines.
- Schedule the jobs that meet their deadlines in EDD order (Why?)
- Schedule the remaining jobs in an arbitrary order.

Question: How do you choose the subset?
Algorithm for $1|| \sum U_j$

- Give an incremental algorithm
- Consider jobs in deadline order
- **Invariant**: Maintain a maximum cardinality set of jobs that meet their deadlines, among such sets, choose the one with the smallest total amount of processing time.
Algorithm for $1||\Sigma U_j$

- Give an incremental algorithm
- Consider jobs in deadline order
- **Invariant**: Maintain a maximum cardinality set of jobs that meet their deadlines, among such sets, choose the one with the smallest total amount of processing time.

Algorithm

- Sort jobs by deadlines; $S = \emptyset$
- For each job j in deadline order
 - $S = S \cup \{j\}$
 - if j doesn’t meet it’s deadline when S is scheduled
 * $S = S - \{\text{job in } S \text{ with largest processing time}\}$
Analysis

• Run time
 – Need to sort – $O(n \log n)$
 – Need to maintain the schedule for S and delete the job with largest processing time. (Maintain a set of numbers doing insert, delete and delete max operations).
Analysis

- Run time
 - Need to sort – $O(n \log n)$
 - Need to maintain the schedule for S and delete the job with largest processing time. (Maintain a set of numbers doing insert, delete and delete max operations). – Use a priority queue, each operations is $O(\log n)$ time.

Analysis: Proof by Induction. After each step k, let S_k denote S.
- S_k schedules a maximum sized subset of $\{1, \ldots, k\}$
- Among all such subsets S_k is the one with the minimum total processing time.
Another Example

<table>
<thead>
<tr>
<th>j</th>
<th>p_j</th>
<th>d_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>15</td>
</tr>
</tbody>
</table>
Special Case of a common deadline

• $1||\sum U_j$ is easy.

• What about $1||\sum w_j U_j$?

Example

<table>
<thead>
<tr>
<th>j</th>
<th>p_j</th>
<th>w_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>20</td>
</tr>
</tbody>
</table>

D is 40.

• We are choosing a minimum weight subset of jobs that miss their deadline.

• Equivalently: we are choosing a maximum weight subset of jobs that make their deadlines.

• Equivalently: Choosing a maximum weight set of jobs that fit in a “bin” of certain size.
Knapsack

\[
\max \sum_j w_j x_j
\]

s.t. \(\sum_j p_j x_j \leq D \)

A one constraint lp, a knapsack problem.

- If you can take objects fractionally, then the greedy algorithm \((w_j/p_j) \) is optimal.
- What about the integral (non-preemptive case).

Example

<table>
<thead>
<tr>
<th>(j)</th>
<th>(p_j)</th>
<th>(w_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>90</td>
<td>89</td>
</tr>
</tbody>
</table>

\(D \) is 100.
Solving Knapack Via Dynamic Programming

1. Non-polynomial. We will explicitly solve the problem for all possible values of either time or weight (in this example time.)

2. Polynomial would be polynomial in $n, m, \log W, \log D$, where $W = \max_j w_j$.

3. Running time will be polynomial in n, m, W, D. Called pseudopolynomial.

4. Reasonable approach when W and/or D is not too large.

Main Ideas:

- Parameterize solution, and define optimal solutions of a certain size in terms of solutions with smaller parameter values.

- Build up a table of solutions, eventually obtaining the solution for the desired parameter value.
DP for Knapsack: maximum weight competing by deadline

- $f(j, t)$ will be the best way to schedule jobs 1, ..., j with t or less total processing time.
- Best means maximum total weight.

- What is $f(n, D)$?
- Maximum weight way to schedule all the jobs using at most D total processing time.
- This is the problem we want to solve.
To schedule jobs $1, \ldots, j$ using t total processing time there are two cases:

- job j is not scheduled.
- job j is scheduled
To schedule jobs $1, \ldots, j$ using t total processing time there are two cases:

- job j is not scheduled.
- job j is scheduled

- If j is not scheduled, then the optimal solution for $1, \ldots, j$ is the same as the optimal solution for $1, \ldots, j-1$, hence $f(j, t) = f(j - 1, t)$
- If j is scheduled, then we need to add j to the schedule, hence we have to look at the optimal schedule using $t - p_j$ units of processing, hence: $f(j, t) = f(j - 1, t - p_j) + w_j$.

We don’t know which case happens, so we try all and take the maximum

$$f(j, t) = \max\{f(j - 1, t), f(j - 1, t - p_j) + w_j\}$$

We initialize with $f(0, \cdot) = 0, f(\cdot, 0) = 0$, and anything with a negative index has a value of $-\infty$.
Example

\[f(j, t) = \max\{f(j - 1, t), f(j - 1, t - p_j) + w_j\} \]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>90</td>
<td>89</td>
</tr>
</tbody>
</table>

\(D \) is 100.