Minimizing the Number of Tardy Jobs

$1 || \Sigma U_j$

nple	Э
p_{j}	d_j
10	10
2	11
7	13
4	15
8	20
	$\begin{array}{c} p_{j} \\ 10 \\ 2 \\ 7 \\ 4 \end{array}$

Ideas:

- Need to choose a subset of jobs S that meet their deadlines.
- Schedule the jobs that meet their deadlines in EDD order (Why?)
- Schedule the remaining jobs in an arbitrary order.

Question: How do you choose the subset?

Algorithm for $1 || \Sigma U_j$

- Give an incremental algorithm
- Consider jobs in deadline order
- Invariant: Maintain a maximum cardinality set of jobs that meet their deadlines, among such sets, choose the one with with the smallest total amount of processing time.

Algorithm for $1|| \Sigma U_j$

- Give an incremental algorithm
- Consider jobs in deadline order
- Invariant: Maintain a maximum cardinality set of jobs that meet their deadlines, among such sets, choose the one with with the smallest total amount of processing time.

Algorithm

- Sort jobs by deadlines; $S = \emptyset$
- For each job j in deadline order
 - $-S = S \cup \{j\}$
 - if j doesn't meet it's deadline when S is scheduled * $S = S - \{ \text{ job in S with largest processing time } \}$

Analysis

• Run time

- -Need to sort $O(n \log n)$
- Need to maintain the schedule for S and delete the job with largest processing time. (Maintain a set of numbers doing insert, delete and delete max operations).

Analysis

• Run time

- -Need to sort $O(n \log n)$
- Need to maintain the schedule for S and delete the job with largest processing time. (Maintain a set of numbers doing insert, delete and delete max operations). Use a priority queue, each operations is $O(\log n)$ time.

Analysis: Proof by Induction. After each step k, let S_k denote S.

- S_k schedules a maximum sized subset of $\{1, \ldots, k\}$
- Among all such subsets S_k is the one with the minimum total processing time.

Another Example

Special Case of a common deadline

- $1 || \Sigma U_j$ is easy.
- What about $1 || \sum w_j U_j$

Example

- j
 pj
 wj

 1
 10
 10

 2
 20
 50

 3
 30
 20
- *D* is 40.
- We are choosing a minimum weight subset of jobs that miss their deadline
- Equivalently: we are choosing a maximum weight subset of jobs that make their dealines.
- Equivalently: Choosing a maximum weight set of jobs that fit in a "bin" of certain size.

Knapsack

$$\max \sum_{j} w_{j} x_{j}$$
s.t. $\sum_{j} p_{j} x_{j} \le D$

A one constraint lp, a knapsack problem.

- \bullet If you can take objects fractionally, then the greedy algorithm (w_j/p_j) is optimal.
- What about the integral (non-preemptive case).

Example

j	p_{j}	w_{j}
1	11	12
2	9	9
3	90	89
D	is 1	.00

Solving Knapack Via Dynamic Programming

- 1. Non-polynomial. We will explicitly solve the problem for all possible values of either time or weight (in this example time.)
- 2. Polynomial would be polynomial in $n, m, \log W, \log D$, where $W = \max_j w_j$
- 3. Running time will be polynomial in n, m, W, D. Called pseudopolynomial.
- 4. Reasonable approach when W and/or D is not too large.

Main Ideas:

٠

- Parameterize solution, and define optimal solutions of a certain size in terms of solutions with smaller parameter values.
- Build up a table of solutions, eventually obtaining the solution for the desired parameter value.

DP for Knapsack: maximum weight competing by deadlin

- f(j,t) will be the best way to schedule jobs $1, \ldots, j$ with t or less total processing time.
- Best means maximum total weight.
- What is f(n, D) ?
- Maximum weight way to schedule all the jobs using at most D total processing time.
- This is the problem we want to solve.

\mathbf{DP}

To schedule jobs $1, \ldots, j$ using t total processing time there are two cases:

- job j is not scheduled.
- job j is scheduled

\mathbf{DP}

To schedule jobs $1, \ldots, j$ using t total processing time there are two cases:

- job j is not scheduled.
- job j is scheduled
- If j is not scheduled, then the optimal solution for $1, \ldots, j$ is the same as the optimal solution for $1, \ldots, j-1$, hence f(j,t) = f(j-1,t)
- If j is scheduled, then we need to add j to the schedule, hence we have to look at the optimal schedule using $t p_j$ units of processing, hence: $f(j,t) = f(j-1,t-p_j) + w_j$.

We don't know which case happens, so we try all and take the maximum

$$f(j,t) = \max\{f(j-1,t), f(j-1,t-p_j) + w_j\}$$

We initialize with $f(0,\cdot)=0, f(\cdot,0)=0$, and anything with a negative index has a value of $-\infty$.

Example

$$f(j,t) = \max\{f(j-1,t), f(j-1,t-p_j) + w_j\}$$

j	$\mid p_j$	w_{j}	
1	11		
2	9	9	
3	90	89	
D	is 100.		