Minimizing the Number of Tardy Jobs

$1\left|\mid \Sigma U_{j}\right.$
Example

j	p_{j}	d_{j}
1	10	10
2	2	11
3	7	13
4	4	15
5	8	20

Ideas:

- Need to choose a subset of jobs S that meet their deadlines.
- Schedule the jobs that meet their deadlines in EDD order (Why?)
- Schedule the remaining jobs in an arbitrary order.

Question: How do you choose the subset?

Algorithm for $1\left|\mid \Sigma U_{j}\right.$

- Give an incremental algorithm
- Consider jobs in deadline order
- Invariant: Maintain a maximum cardinality set of jobs that meet their deadlines, among such sets, choose the one with with the smallest total amount of processing time.

Algorithm for $1\left|\mid \Sigma U_{j}\right.$

- Give an incremental algorithm
- Consider jobs in deadline order
- Invariant: Maintain a maximum cardinality set of jobs that meet their deadlines, among such sets, choose the one with with the smallest total amount of processing time.

Algorithm

- Sort jobs by deadlines; $S=\emptyset$
- For each job j in deadline order
$-S=S \cup\{j\}$
- if j doesn't meet it's deadline when S is scheduled $* S=S-\{$ job in S with largest processing time $\}$

Analysis

- Run time
- Need to sort - $O(n \log n)$
- Need to maintain the schedule for S and delete the job with largest processing time. (Maintain a set of numbers doing insert, delete and delete max operations).

Analysis

- Run time
- Need to sort - $O(n \log n)$
- Need to maintain the schedule for S and delete the job with largest processing time. (Maintain a set of numbers doing insert, delete and delete max operations). - Use a priority queue, each operations is $O(\log n)$ time.

Analysis: Proof by Induction. After each step k, let S_{k} denote S.

- S_{k} schedules a maximum sized subset of $\{1, \ldots, \mathbf{k}\}$
- Among all such subsets S_{k} is the one with the minimum total processing time.

Another Example

j	p_{j}	d_{j}
1	3	5
2	4	7
3	2	8
4	6	10
5	6	11
6	1	14
7	5	15

Special Case of a common deadline

- $1 \| \Sigma U_{j}$ is easy.
- What about $1 \| \Sigma w_{j} U_{j}$

Example

j	p_{j}	w_{j}
1	10	10
2	20	50
3	30	20

D is 40.

- We are choosing a minimum weight subset of jobs that miss their deadline
- Equivalently: we are choosing a maximum weight subset of jobs that make their dealines.
- Equivalently: Choosing a maximum weight set of jobs that fit in a "bin" of certain size.

Knapsack

$$
\begin{gathered}
\quad \max \sum_{j} w_{j} x_{j} \\
\text { s.t. } \sum_{j} p_{j} x_{j} \leq D
\end{gathered}
$$

A one constraint lp, a knapsack problem.

- If you can take objects fractionally, then the greedy algorithm (w_{j} / p_{j}) is optimal.
- What about the integral (non-preemptive case).

Example

j	p_{j}	w_{j}
$\mathbf{1}$	$\mathbf{1 1}$	$\mathbf{1 2}$
$\mathbf{2}$	$\mathbf{9}$	$\mathbf{9}$
$\mathbf{3}$	$\mathbf{9 0}$	$\mathbf{8 9}$

D is 100 .

Solving Knapack Via Dynamic Programming

1. Non-polynomial. We will explicitly solve the problem for all possible values of either time or weight (in this example time.)
2. Polynomial would be polynomial in $n, m, \log W, \log D$, where $W=\max _{j} w_{j}$
3. Running time will be polynomial in n, m, W, D. Called pseudopolynomial.
4. Reasonable approach when W and/or D is not too large.

Main Ideas:

- Parameterize solution, and define optimal solutions of a certain size in terms of solutions with smaller parameter values.
- Build up a table of solutions, eventually obtaining the solution for the desired parameter value.

DP for Knapsack: maximum weight competing by deadlir

- $f(j, t)$ will be the best way to schedule jobs $1, \ldots, j$ with t or less total processing time.
- Best means maximum total weight.
- What is $f(n, D)$?
- Maximum weight way to schedule all the jobs using at most D total processing time.
- This is the problem we want to solve.

DP

To schedule jobs $1, \ldots, j$ using t total processing time there are two cases:

- job j is not scheduled.
- job j is scheduled

DP

To schedule jobs $1, \ldots, j$ using t total processing time there are two cases:

- job j is not scheduled.
- job j is scheduled
- If j is not scheduled, then the optimal solution for $1, \ldots, j$ is the same as the optimal solution for $1, \ldots, j-1$, hence $f(j, t)=f(j-1, t)$
- If j is scheduled, then we need to add j to the schedule, hence we have to look at the optimal schedule using $t-p_{j}$ units of processing, hence: $\quad f(j, t)=f\left(j-1, t-p_{j}\right)+w_{j}$.

We don't know which case happens, so we try all and take the maximum

$$
f(j, t)=\max \left\{f(j-1, t), f\left(j-1, t-p_{j}\right)+w_{j}\right\}
$$

We initialize with $f(0, \cdot)=0, f(\cdot, 0)=0$, and anything with a negative index has a value of $-\infty$.

Example

$$
f(j, t)=\max \left\{f(j-1, t), f\left(j-1, t-p_{j}\right)+w_{j}\right\}
$$

j	p_{j}	w^{\prime}
1	11	12
2	9	9
3	90	89

