Tanker Scheduling

Ships have:

- capacity
- draught (minimum depth to float)
- range of speeds and fuel consumption
- location and available time

Ports have:

- weight limits
- draught
- other physical restrications
- government restrictions

Tanker Scheduling (cont)

Cargo has

- type
- load port
- destination prot
- time constraints
- load and unload times

A company will own ships and may rent ships. It is more expensive to rent ships.

Objective: minimize cost

- operarting costs for company shipos
- charter rates
- fuel costs
- port charges

Formulation

Notation:

Parameters

- n - number of cargoes
- T - number of company owned tankers
- p - number of ports
plus data for all of the above.

Compute

- S_{i} - the set of possible schedules for ship $i . a_{i j}^{l}=1$ if under schedule l ship i transports cargo j.
- c_{j}^{*} is amount paid to transport cargo j on a ship that is not company owned.
- c_{i}^{l} - incremental cost of operating a company-owned ship i under schedule l versus keeping ship i idle.
- Compute the profit for operationg ship i according to schedule $l-\pi_{i}^{l}=$ $\sum_{j=1}^{n} a_{i j}^{l} c_{j}^{*}-c_{i}^{l}$.

Formulation

Decision variable: x_{i}^{l} if ship i follows schedule l.
Formulation

$$
\begin{array}{rl}
\operatorname{maximize} & \sum_{i=1}^{T} \sum_{l \in S_{i}} \pi_{i}^{l} x_{i}^{l} \\
\text { subject to } \\
\sum_{i=1}^{T} \sum_{l \in S_{i}} a_{i j}^{l} x_{i}^{l} & \leq 1 \quad j=1, \ldots, n \\
\sum_{l \in S_{i}} x_{i}^{l} & \leq 1 \\
x_{i}^{l} & \in\{0,1\} \\
l & l \in S_{i}, i=1, \ldots, T \\
\end{array}
$$

Solution Set packing. Use branch and bound.

Example

- 3 ships
- 12 cargoes

Analysis of the data show that each of the ships has five feasible schedules:

Schedules	$a_{1 j}^{1}$	$a_{1 j}^{2}$	$a_{1 j}^{3}$	$a_{1 j}^{4}$	$a_{1 j}^{5}$	$a_{2 j}^{1}$	$a_{2 j}^{2}$	$a_{2 j}^{3}$	$a_{2 j}^{4}$	$a_{2 j}^{5}$	$a_{3 j}^{1}$	$a_{3 j}^{2}$	$a_{3 j}^{3}$	$a_{3 j}^{4}$	$a_{3 j}^{5}$
cargo 1	1	0	0	1	1	0	1	0	0	0	0	0	0	1	0
cargo 2	1	0	0	0	0	1	0	0	0	0	0	1	0	1	1
cargo 3	0	0	1	0	1	0	0	0	1	1	0	0	0	0	0
cargo 4	0	1	1	1	0	1	0	1	0	0	0	0	0	0	0
cargo 5 5	1	1	0	0	0	0	0	0	1	0	0	0	1	0	1
cargo 6	0	0	0	1	1	0	1	0	0	1	1	0	0	0	0
cargo 7	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1
cargo 8 8	0	1	0	0	0	0	1	0	1	1	1	0	0	0	0
cargo 9	0	0	1	0	0	0	1	0	0	1	1	1	1	0	0
cargo 10	0	1	0	0	0	1	0	0	0	0	1	1	0	0	0
cargo 11	0	0	0	0	0	0	1	1	0	0	0	1	1	1	0
cargo 12	0	0	0	1	0	0	0	0	0	0	1	0	1	1	1

Costs

Charter cost (CC) for transporting a particular cargo by charter:

Cargo	1	2	3	4	5	6	7	8	9	10	11	12
CC	1429	1323	1208	512	2173	2217	1775	1885	2468	1928	1634	741

Operating costs of the tankers under each one of the schedules is also given:

Schedule l	1	2	3	4	5
cost of tanker 1 $\left(c_{1}^{l}\right)$	5608	5033	2722	3505	3996
cost of tanker 2 $\left(c_{2}^{l}\right)$	4019	6914	4693	7910	6866
cost of tanker 3 $\left(c_{3}^{l}\right)$	5829	5588	82824	3338	4715

We can compute the profit for each schedule

| Schedule l | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| profit of tanker 1 $\left(\pi_{1}^{l}\right)$ | -683 | 1465 | 1466 | 1394 | 858 |
| profit of tanker $2\left(\pi_{2}^{l}\right)$ | 1629 | 834 | 1113 | -869 | 910 |
| profit of tanker 3 $\left(\pi_{3}^{l}\right)$ | 1525 | 1765 | -1268 | 1789 | 1297 |

IP

Now we can give an IP

$$
\begin{aligned}
\text { maximize }-733 x_{1}^{1}+1465 x_{1}^{2}+1466 x_{1}^{3}+1394 x_{1}^{4}+858 x_{1}^{5} & \\
+1629 x_{2}^{1}+834 x_{2}^{2}+1113 x_{2}^{3}+-869 x_{2}^{4}+910 x_{2}^{5} & \\
+1525 x_{3}^{1}+1765 x_{3}^{2}+-1268 x_{3}^{3}+1789 x_{3}^{4}+1297 x_{3}^{5} & \\
\text { subject to } & \\
x_{1}^{1}+x_{1}^{4}+x_{1}^{5}+x_{2}^{2}+x_{3}^{4} & \leq 1 \\
x_{1}^{1}+x_{2}^{2}+x_{3}^{2}+x_{3}^{4}+x_{3}^{5} & \leq 1 \\
x_{1}^{3}+x_{1}^{5}+x_{2}^{4}+x_{2}^{5} & \leq 1 \\
x_{1}^{2}+x_{1}^{3}+x_{1}^{4}+x_{2}^{1}+x_{2}^{3} & \leq 1 \\
x_{1}^{1}+x_{1}^{2}+x_{2}^{4}+x_{3}^{3}+x_{3}^{5} & \leq 1 \\
x_{1}^{4}+x_{1}^{5}+x_{2}^{2}+x_{2}^{5}+x_{3}^{1} & \leq 1 \\
x_{2}^{3}+x_{2}^{4}+x_{3}^{5} & \leq 1 \\
x_{1}^{2}+x_{2}^{1}+x_{2}^{3}+x_{2}^{4}+x_{2}^{5} & \leq 1 \\
x_{1}^{3}+x_{2}^{2}+x_{2}^{5}+x_{3}^{1}+x_{3}^{2}+x_{3}^{3} & \leq 1 \\
x_{1}^{2}+x_{2}^{1}+x_{3}^{1}+x_{3}^{2} & \leq 1 \\
x_{2}^{2}+x_{2}^{3}+x_{3}^{2}+x_{3}^{3}+x_{3}^{4} & \leq 1 \\
x_{1}^{4}+x_{3}^{1}+x_{3}^{3}+x_{3}^{4}+x_{3}^{5} & \leq 1 \\
& \\
x_{1}^{1}+x_{1}^{2}+x_{1}^{3}+x_{1}^{4}+x_{1}^{5} & \leq 1 \\
x_{2}^{1}+x_{2}^{2}+x_{2}^{3}+x_{2}^{4}+x_{1}^{5} & \leq 1
\end{aligned}
$$

$$
\begin{aligned}
x_{3}^{1}+x_{3}^{2}+x_{3}^{3}+x_{3}^{4}+x_{3}^{5} & \leq 1 \\
x_{i}^{l} & \in\{0,1\}
\end{aligned}
$$

Optimal solution Schedule 3 for ship 1 , schedule 4 for ship 3. Ship 2 remains idle. Cargoes $5,6,7,8,10$ are transported by charters. Value $=$ 3255.

Train timetabling

- One track with many stations (think $1 / 9$ subway line or commuter rail).
- Trains can pass at statations but not between stations.
- Stations are numbered 0 to L.
- Tracks are numbered 1 to $L+1$.
- Track i connectes station $j-1$ with j.
- Time is measured in minutes (1 to 1440).
- You are given preferred arrival, departure, travel, and holdover times for each train at each station.
- There is a piecewise linear function measuring the cost (lost revenue) of deviating from the desired time.

Variables

- $y_{i j}=$ time train i enters link j (leaves station $j-1$)
- $z_{i j}=$ time train i exits line j (arrives at station j)

We compute

- $\tau_{i j}=z_{i j}-y_{i j}$ (travel time of train i in link j)
- $\delta_{i j}=y_{i, j+1}-z_{i j}$ (dwelling time of train i in station j)

We are given costs for each of these quantities:

- $c_{i j}^{a}\left(z_{i j}\right)$ - costs for train i arriving at station j
- $c_{i j}^{d}\left(y_{i j}\right)$ - costs for train i departing from station j
- $c_{i j}^{\tau}\left(\tau_{i j}\right)$ - costs for travel time of train i in link j
- $c_{i j}^{\delta}(\delta i j)$ - costs for travel time of train i dwelling in station j.

Each of these costs is piecewise linear, and we are given min and max values. Also, minimum and maximum headway values H
T is the set of possible trains.
Variable: $\quad x_{h i j}=1$ is train h immediately precedes train i on link j.

$$
\text { minimize } \sum_{i \in T} \sum_{j=1}^{L}\left(c_{i j}^{a}\left(z_{i j}\right)+c_{i, j-1}^{d}\left(y_{i j}\right)+c_{i j}^{\tau}\left(\tau_{i j}\right)\right)+\sum_{i \in T} \sum_{j=1}^{L-1}\left(c_{i j}^{\delta}(\delta i j)\right)
$$

subject to

$$
\begin{array}{rcl}
y_{i j} & \geq y_{i j}^{\min } & i \in T, j=1, \ldots, L \\
y_{i j} & \leq y_{i j}^{\max } & i \in T, j=1, \ldots, L \\
z_{i j} & \geq z_{i j}^{\min } & i \in T, j=1, \ldots, L \\
z_{i j} & \leq z_{i j}^{\max } & i \in T, j=1, \ldots, L \\
\tau_{i j} & =z_{i j}-y_{i j} & i \in T, j=1, \ldots, L \\
\tau_{i j} & \geq \tau_{i j}^{\min } & i \in T, j=1, \ldots, L \\
\tau_{i j} & \leq \tau_{i j}^{\max } & i \in T, j=1, \ldots, L \\
\delta_{i j} & =y_{i, j+1}-z_{i j} & i \in T, j=1, \ldots, L \\
\delta_{i j} & \geq \delta_{i j}^{\min } & i \in T, j=1, \ldots, L-1 \\
\delta_{i j} & \leq \delta_{i j}^{\max } & i \in T, j=1, \ldots, L-1 \\
y_{i, j+1}-y_{h, j+1}+\left(1-x_{h i j}\right) M & \geq H_{h i j}^{d} & i \in T, j=1, \ldots, L \\
z_{i j}-z_{h j}+\left(1-x_{h i k}\right) M \geq H_{h i j}^{a} i \in T, j=1, \ldots, L \\
\sum_{h \in\{T-i\}} x_{h i j} & =1 & i \in T, j=1, \ldots, L \\
x_{h i j} & \in\{0,1\} &
\end{array}
$$

Solution

Can solve using heuristic similar to shifting bottleneck heuristic. Set one train (by importance) and resolve LP relaxation.

