Tanker Scheduling

Ships have:

- capacity
- draught (minimum depth to float)
- range of speeds and fuel consumption
- location and available time

Ports have:

- weight limits
- \bullet draught
- other physical restrications
- government restrictions

Tanker Scheduling (cont)

Cargo has

- type
- load port
- \bullet destination prot
- time constraints
- load and unload times

A company will own ships and may rent ships. It is more expensive to rent ships.

Objective: minimize cost

- operarting costs for company shipos
- charter rates
- \bullet fuel costs
- port charges

Formulation

Notation:

Parameters

- $\bullet\ n$ number of cargoes
- $\bullet\ T$ number of company owned tankers
- $\bullet\ p$ number of ports

plus data for all of the above.

Compute

- S_i the set of possible schedules for ship *i*. $a_{ij}^l = 1$ if under schedule *l* ship *i* transports cargo *j*.
- c_j^* is amount paid to transport cargo j on a ship that is not company owned.
- c_i^l incremental cost of operating a company-owned ship i under schedule l versus keeping ship i idle.
- Compute the profit for operationg ship i according to schedule $l \pi_i^l = \sum_{j=1}^n a_{ij}^l c_j^* c_i^l$.

Formulation

Decision variable: x_i^l if ship *i* follows schedule *l*.

Formulation

Solution Set packing. Use branch and bound.

Example

- 3 ships
- 12 cargoes

Analysis of the data show that each of the ships has five feasible schedules:

Schedules	a_{1j}^{1}	a_{1j}^2	a_{1j}^{3}	a_{1j}^4	a_{1j}^{5}	a_{2j}^{1}	a_{2j}^{2}	a_{2j}^{3}	a_{2j}^{4}	a_{2j}^{5}	a_{3j}^{1}	a_{3j}^{2}	a_{3j}^{3}	a_{3j}^{4}	a_{3j}^{5}
cargo 1	1	0	0	1	1	0	1	0	0	0	0	0	0	1	0
cargo 2	1	0	0	0	0	1	0	0	0	0	0	1	0	1	1
cargo 3	0	0	1	0	1	0	0	0	1	1	0	0	0	0	0
cargo 4	0	1	1	1	0	1	0	1	0	0	0	0	0	0	0
cargo 5	1	1	0	0	0	0	0	0	1	0	0	0	1	0	1
cargo 6	0	0	0	1	1	0	1	0	0	1	1	0	0	0	0
cargo 7	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1
cargo 8	0	1	0	0	0	0	1	0	1	1	1	0	0	0	0
cargo 9	0	0	1	0	0	0	1	0	0	1	1	1	1	0	0
cargo 10	0	1	0	0	0	1	0	0	0	0	1	1	0	0	0
cargo 11	0	0	0	0	0	0	1	1	0	0	0	1	1	1	0
cargo 12	0	0	0	1	0	0	0	0	0	0	1	0	1	1	1

Costs

Charter cost (CC) for transporting a particular cargo by charter:

Cargo	1	2	3	4	5	6	7	8	9	10	11	12
CC	1429	1323	1208	512	2173	2217	1775	1885	2468	1928	1634	741

Operating costs of the tankers under each one of the schedules is also given:

Schedule l	1	2	3	4	5
cost of tanker 1 (c_1^l)	5608	5033	2722	3505	3996
cost of tanker 2 (c_2^l)	4019	6914	4693	7910	6866
cost of tanker 3 (c_3^l)	5829	5588	82824	3338	4715

We can compute the profit for each schedule

Schedule l	1	2	3	4	5
profit of tanker 1 (π_1^l)	-683	1465	1466	1394	858
profit of tanker 2 (π_2^l)	1629	834	1113	-869	910
profit of tanker 3 (π_3^l)	1525	1765	-1268	1789	1297

\mathbf{IP}

Now we can give an IP

$$\begin{aligned} \mathbf{maximize} &- 733x_1^1 + 1465x_1^2 + 1466x_1^3 + 1394x_1^4 + 858x_1^5 \\ &+ 1629x_2^1 + 834x_2^2 + 1113x_2^3 + -869x_2^4 + 910x_2^5 \\ &+ 1525x_3^1 + 1765x_3^2 + -1268x_3^3 + 1789x_3^4 + 1297x_3^5 \\ & \mathbf{subject to} \\ & x_1^1 + x_1^4 + x_1^5 + x_2^2 + x_3^4 &\leq 1 \\ & x_1^1 + x_2^2 + x_3^2 + x_3^4 + x_5^5 &\leq 1 \\ & x_1^2 + x_1^3 + x_1^5 + x_2^4 + x_2^5 &\leq 1 \\ & x_1^2 + x_1^3 + x_1^4 + x_2^1 + x_2^3 &\leq 1 \\ & x_1^1 + x_1^2 + x_2^4 + x_3^3 + x_5^5 &\leq 1 \\ & x_1^2 + x_1^2 + x_2^1 + x_2^2 + x_2^5 + x_1^3 &\leq 1 \\ & x_1^2 + x_2^1 + x_2^2 + x_2^5 + x_1^3 &\leq 1 \\ & x_1^2 + x_2^1 + x_2^2 + x_2^5 + x_1^3 + x_2^3 &\leq 1 \\ & x_1^2 + x_2^1 + x_2^1 + x_3^2 + x_3^3 &\leq 1 \\ & x_1^2 + x_2^1 + x_3^1 + x_4^2 + x_3^2 &\leq 1 \\ & x_1^2 + x_2^1 + x_3^1 + x_3^2 + x_3^3 &\leq 1 \\ & x_1^2 + x_1^2 + x_3^1 + x_3^2 + x_3^3 &\leq 1 \\ & x_1^2 + x_1^2 + x_3^1 + x_3^3 + x_4^3 + x_5^3 &\leq 1 \\ & x_1^1 + x_1^2 + x_1^3 + x_3^3 + x_4^3 + x_5^3 &\leq 1 \\ & x_1^1 + x_1^2 + x_1^3 + x_3^1 + x_4^1 + x_5^1 &\leq 1 \end{aligned}$$

 $x_2^1 + x_2^2 + x_2^3 + x_2^4 + x_1^5 \leq 1$

$$\begin{aligned}
 x_3^1 + x_3^2 + x_3^3 + x_3^4 + x_3^5 &\leq 1 \\
 x_i^l &\in \{0, 1\}
 \end{aligned}$$

Optimal solution Schedule 3 for ship 1, schedule 4 for ship 3. Ship 2 remains idle. Cargoes 5,6,7,8,10 are transported by charters. Value = 3255.

Train timetabling

- One track with many stations (think 1/9 subway line or commuter rail).
- Trains can pass at statations but not between stations.
- Stations are numbered 0 to L.
- Tracks are numbered 1 to L + 1.
- Track *i* connectes station j 1 with *j*.
- Time is measured in minutes (1 to 1440).
- You are given preferred arrival, departure, travel, and holdover times for each train at each station.
- There is a piecewise linear function measuring the cost (lost revenue) of deviating from the desired time.

IP

Variables

- y_{ij} = time train *i* enters link *j* (leaves station j 1)
- z_{ij} = time train *i* exits line *j* (arrives at station *j*)

We compute

- $\tau_{ij} = z_{ij} y_{ij}$ (travel time of train *i* in link *j*)
- $\delta_{ij} = y_{i,j+1} z_{ij}$ (dwelling time of train *i* in station *j*)

We are given costs for each of these quantities:

- $\bullet \ c^a_{ij}(z_{ij})$ costs for train i arriving at station j
- $c^d_{ij}(y_{ij})$ costs for train i departing from station j
- $c_{ij}^{\tau}(\tau_{ij})$ costs for travel time of train i in link j
- $\bullet \ c_{ij}^{\delta}(\delta ij)$ costs for travel time of train i dwelling in station j.

Each of these costs is piecewise linear, and we are given min and max values. Also, minimum and maximum headway values H

T is the set of possible trains.

Variable: $x_{hij} = 1$ is train h immediately precedes train i on link j.

 \mathbf{IP}

minimize
$$\sum_{i \in T} \sum_{j=1}^{L} \left(c_{ij}^{a}(z_{ij}) + c_{i,j-1}^{d}(y_{ij}) + c_{ij}^{\tau}(\tau_{ij}) \right) + \sum_{i \in T} \sum_{j=1}^{L-1} (c_{ij}^{\delta}(\delta_{ij}))$$

subject to

y_{ij}	$\geq y_{ij}^{\min}$	$i \in T, j = 1, \dots, L$
y_{ij}	$\leq y_{ij}^{ m max}$	$i \in T, j = 1, \dots, L$
z_{ij}	$\geq z_{ij}^{\min}$	$i \in T, j = 1, \dots, L$
z_{ij}	$\leq z_{ij}^{\max}$	$i \in T, j = 1, \dots, L$
$ au_{ij}$	$= z_{ij} - y_{ij}$	$i \in T, j = 1, \dots, L$
$ au_{ij}$	$\geq au_{ij}^{\min}$	$i \in T, j = 1, \dots, L$
$ au_{ij}$	$\leq au_{ij}^{\max}$	$i \in T, j = 1, \dots, L$
δ_{ij}	$=y_{i,j+1}-z_{ij}$	$i \in T, j = 1, \dots, L$
δ_{ij}	$\geq \delta_{ij}^{\min}$	$i \in T, j = 1, \dots, L-1$
δ_{ij}	$\leq \delta_{ij}^{\max}$	$i \in T, j = 1, \dots, L-1$
$y_{i,j+1} - y_{h,j+1} + (1 - x_{hij})M$	$\geq H^d_{hij}$	$i \in T, j = 1, \dots, L$
$z_{ij} - z_{hj} + (1 - x_{hik})M \ge H^a_{hij}$	$i \in T, j = 1, \ldots, L$	
$\sum_{h \in \{T-i\}} x_{hij}$	= 1	$i \in T, j = 1, \dots, L$
x_{hij}	$\in \{0,1\}$	

Solution

Can solve using heuristic similar to shifting bottleneck heuristic. Set one train (by importance) and resolve LP relaxation.