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Abstract. The problem of scheduling a set of n jobs on m identical machines so as to minimize the 
makespan time is perhaps the most well-studied problem in the theory of approximation algorithms for 
NP-hard optimization problems. In this paper the strongest possible type of result for this problem, a 
polynomial approximation scheme, is presented. More precisely, for each e, an algorithm that runs in 
time O((n/#“2) and has relative error at most c is given. In addition, more practical algorithms for c = 
l/5 + 2-” and t = l/6 + 2-‘, which have running times U(n(k + log n)) and O(n(km4 + log n)) are 
presented. The techniques of analysis used in proving these results are extremely simple, especially in 
comparison with the baroque weighting techniques used previously. 

The scheme is based on a new approach to constructing approximation algorithms, which is called 
dual approximation algorithms, where the aim is to find superoptimal, but infeasible, solutions, and the 
performance is measured by the degree of infeasibility allowed. This notion should find wide applicability 
in its own right and should be considered for any optimization problem where traditional approximation 
algorithms have been particularly elusive. 

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Non- 
numerical Algorithms and Problems-computations on discrete structures 

General Terms: Theory, Verification 

Additional Key Words and Phrases: Approximation algorithms, combinatorial optimization, heuristics, 
scheduling theory, worst-case analysis 

1. Introduction 

The problem of minimizing the makespan of the schedule for a set of jobs is one 
of the most well-studied in scheduling theory. For this problem, we are given a set 
of n jobs with designated integral processing times pj to be scheduled on m identical 
machines. A schedule of jobs is an assignment of the jobs to the machines, so that 
each machine is scheduled for a certain total time, and the maximum time that 
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any machine is scheduled for is called the makespan of the schedule. In the 
minimum makespan problem, the objective is to find a schedule that minimizes 
the makespan; this optimum value is denoted OPT,,,,&, m), where I denotes the 
set of processing times, and m is the specified number of machines. 

The minimum makespan problem is NP-complete, so that it is extremely unlikely 
that there exist efficient algorithms to find a schedule with makespan OPT,+,M 
(Z, m). As a result, it is natural to consider algorithms that are guaranteed to 
produce solutions that are close to the optimum. Polynomial-time algorithms that 
always produce solutions of objective value at most (1 + c) times the optimal value 
are often called t-approximation algorithms. A family of algorithms {A,}, such that 
for each c > 0 the algorithm A, is an t-approximation algorithm, is referred to 
either as a polynomial approximation scheme or an c-approximation scheme. We 
shall present the first such scheme for the minimum makespan problem. 

The first work done in analyzing algorithms to show that they have provably 
good performance was for the minimum makespan problem. Perhaps the most 
natural class of algorithms for the minimum makespan problem is the class of list 
processing algorithms. In this approach, the jobs are given in a list, in a specified 
order, and the next job on the list is scheduled on the next machine to become 
idle. In 1966, Graham showed that any such algorithm always delivers a schedule 
that has makespan at most (2 - l/m)OPTM,+,(Z, m) [6]. Three years later Graham 
showed that, if the next job in the list to be scheduled is the one with the Longest 
Processing Time, the so-called LPT rule, then the schedule produced has makespan 
at most (4/3 - l/3m)OPT~f,w(Z, m) [7]. 

A problem that is closely related to the minimum makespan problem is the bin- 
packing problem. In this problem, the input consists of y1 pieces of size pj, where 
each size is in the interval [0, I]. The objective is to pack the pieces into bins where 
the sum of the sizes of the pieces packed in any bin cannot exceed 1, in such a way 
that the minimum number of bins is used. This minimum shall be denoted 
OPTBP(I). 

Coffman et al. [I] exploited the relationship between these two problems in 
designing their MULTIFIT algorithm for the minimum makespan problem. They 
proved that this algorithm always delivered a schedule with makespan at most 
1.22OPT&Z, m). Friesen later improved this bound to 1 .~OOPTMM(I, m), but in 
the process, the proof became rather complicated in its intricate use of weighting 
function techniques [4]. This bound was then improved to (72/61)OPTMM(I, m) 
by Langston [ 111, who analyzed a modification of the MULTIFIT algorithm, using 
weighting function techniques as well. To the best of the authors’ knowledge, for 
algorithms that are polynomial in the length of the input, this is the best previously 
known bound. There have existed, however, polynomial approximation schemes 
for the minimum makespan problem for any fixed value of m, but these have 
running times that are exponential in m [7, 131. 

It is not hard to see that the bin-packing and the minimum makespan problems 
have essentially the same recognition problem. One would therefore expect that 
approximation results for one problem would easily translate to the other, by using 
a simple binary search approach. Since there are polynomial approximation 
schemes known for the bin-packing problem, this would seem to imply that creating 
a polynomial approximation scheme for the minimum makespan problem should 
be a trivial task. Unfortunately, it seems to be futile to relate the performance of a 
bin-packing algorithm to the performance of a corresponding algorithm for the 
minimum makespan problem; the MULTIFIT algorithm is derived in this way 
from the FIRST FIT DECREASING bin-packing algorithm, and yet the 
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MULTIFIT algorithm appears to require a completely new and different analysis 
to derive a bound that is seemingly unrelated as well. 

More important, there is strong complexity-theoretic evidence that any approach 
that seeks to obtain an approximation algorithm for the minimum makespan 
problem using an approximation algorithm for the bin-packing problem as a “black 
box” is doomed to failure. For the bin-packing problem it is possible to createfully 
polynomial approximation schemes (where the running time is polynomial in l/t 
as well) by allowing the guarantee to be ( 1 + t)OPT&) + f( I/E), where fis some 
polynomial function [lo]. The minimum makespan problem differs from the bin- 
packing problem in a crucial way; that is, the job sizes can be resealed, thus 
increasing OPT without affecting the essential structure of the problem. The effect 
of the additive constant can thus be made arbitrarily small, creating a fully 
polynomial approximation scheme with f = 0. For any problem that is strongly 
NP-complete, the existence of a fully polynomial approximation scheme with 
f = 0 implies that P = NP [5]. Since the minimum makespan problem is strongly 
NP-complete, it follows that unless P = NP, there cannot exist a fully polynomial 
approximation scheme with any polynomial f: 

In this paper we give a polynomial approximation scheme for the minimum 
makespan problem, where the algorithm that guarantees a relative error of c 
executes in O((~/C)“‘*) time. Although this scheme is not practical, we develop 
techniques to give refinements of the scheme for E = l/5 and E = l/6 that are 
efficient. In comparison with MULTIFIT, the algorithm given here with an 
identical performance guarantee is faster, and the proof of the guarantee is rather 
simple. 

The algorithms given here are all based on the notion of a dual approximation 
algorithm. Traditional approximation algorithms seek feasible solutions that are 
suboptimal, where the performance of the algorithm is measured by the degree of 
suboptimality allowed. In a dual approximation algorithm, the aim is to find an 
infeasible solution that is superoptimal, where the performance of the algorithm is 
measured by the degree of infeasibility allowed. In addition to employing dual 
approximation algorithms for the bin-packing problem, we show a general rela- 
tionship between traditional (or primal) approximation algorithms, and dual ap- 
proximation algorithms. We believe that the notion of a dual approximation 
algorithm is an important one and should be applicable to many other problems. 

2. Primal and Dual Approximation Algorithms 

In this section we explore the relationship between primal and dual approximation 
algorithms. In particular, we can show that finding an c-approximation algorithm 
for the minimum makespan problem can be reduced to the problem of finding an 
e-dual approximation algorithm for the bin-packing problem, which is, in some 
sense, dual to the minimum makespan problem. In addition, we indicate how 
these ideas are applicable to other problems. 

For the bin-packing problem, an E-dual approximation algorithm is a polynomial- 
time algorithm that constructs a bin-packing such that at most OPT&) bins are 
used, and each bin is filled with pieces totaling at most 1 + 6. There are practical 
applications where the bin capacity is either not known precisely or simply not 
rigid, so that such “overflow” is a natural model of this flexibility. 

As a historical note, it is perhaps significant to mention that notions similar to 
dual approximation algorithms have been considered before. Lawler suggests 
“constraint approximation” in the context of the knapsack problem [ 12, p. 2131 
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posing the following hypothetical situation: “A manager seeks to choose projects 
for a certain period, subject to certain resources constraints (knapsack capacity). 
The profits associated with items are real and hard. The constraints are soft and 
flexible. He certainly wants to earn [the optimal amount], if possible.” Furthermore, 
Friesen measured the performance of several bin-packing algorithms when used 
for bins of size (Y as a ratio of the number of bins used for this size and the optimal 
number of bins needed when the bins have capacity 1 [3]. This approach seems 
similar to our own, but, in its willingness to abandon the constraint of super- 
optimality, most of the power of dual approximation algorithms, both as a 
simple tool for traditional approximation algorithms and for direct practical 
application, is lost. 

Let duab(I) denote an t-dual approximation algorithm for the bin-packing 
problem, Furthermore, let DUAL,(I) denote the number of bins actually used by 
this algorithm. If I denotes a bin-packing instance with piece sizes (pj), it will be 
convenient to let Z/d denote the instance with corresponding piece sizes scaled by 
4 (Pj/d)- 

It is not hard to see that the optima of the bin-packing and minimum makespan 
problems are related in that OPT&I/d) s m if and only if OPTMM(I, m) 5 d. In 
other words, the minimum makespan problem can be viewed as finding the 
minimum deadline d* so that OPT&I/d*) I m. Thus, if we had a procedure for 
optimally solving the bin-packing problem, we could use it within a binary search 
procedure to obtain an optimal solution for the minimum makespan problem. A 
natural extension of this would be to obtain a (traditional) approximation algorithm 
for the minimum makespan problem by using a (traditional) approximation 
algorithm for the bin-packing problem within the binary search. As was discussed 
in the introduction, it is unlikely that such an approach can succeed. Instead, we 
show that the dual approximation algorithm for the bin-packing problem is 
precisely the tool required. 

A useful measure of the size of an instance is SIzE(I, m) = max(C&l pj/m, 
maxjpj). Since any schedule must process each job, OPTMM(I, m) is at least 
maxjpj. The average time scheduled on a processor is C p,/m. Since some processor 
must achieve the average, OPT,,,&, m) is at least SIzE(I, m). By another, 
straightforward argument, it can be shown that the makespan of any list processing 
schedule is at most 2SIzE(I, m) [6]. These bounds serve to initialize the binary 
search given below. 

procedure e-makespan(I, m) 
begin 

upper := 2SIZE(Z, m) 
lower := SIZE(I, m) 
repeat until upper = lower 

begin 
d := (upper + lower)/2 
call duaL(l/d) 
if DUAL,(I/d) > m then lower := d 

else upper := d 
end 

output d* := upper 
call duaf(I/d*) 

end 

This procedure is given with an infinite loop, and later we remove this simpli- 
fying assumption. Since DUAL,(I) is at most OPT,&), and since any list 
processing schedule has a makespan of at most 2SIZE(I, m), it follows that 
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DUAL,(I/upper) I m initially. Furthermore, by the way upper is updated, this 
remains true throughout the execution of the procedure. 

Next we show that OPTMM(Z, m) I lower throughout the execution of the 
program. Since lower = SZZE(I, m) initially, the claim is certainly true before the 
beginning of the repeat loop. Furthermore, any time that lower is updated to d, it 
follows that OPT&/d) 2 DUAL,(Z/d) > m, and, therefore OPTMM(I, m) > d. 
The makespan of the schedule produced is at most (1 + t)d*. In this infinite 
version, upper = lower at “termination,” and therefore, the makespan is at most 
(1 + 6)lower I (1 + E)OPT,,&Z, m). In words, the algorithm is an t-approximation 
algorithm for the minimum makespan problem, which is what we claimed. 

By the fact that all of the processing times are integer we know that rlowerl is 
also a valid lower bound for OPT,,,,,+,(I). As a result, when upper - lower < 1, the 
binary search can be terminated. (The procedure dual should be called once more, 
with the pieces resealed by rlowerl. If this succeeds in using at most m bins, the 
schedule produced should be output. Otherwise, rlowerl + 1 is a lower bound on 
the optimum makespan, so that the schedule produced by d = upper, which is less 
than this bound, can be used instead.) This implies that the algorithm is polynomial 
in the binary encoding of the input. However, a more practical version of this 
result is obtained by considering the number of iterations of the binary search that 
were executed. 

THEOREM 1. If procedure t-makespan(1, m) is executed with k iterations of the 
binary search, the resulting solution has makespan at most (1 + E)( 1 + 
2-k)OPT~d, 4. 

PROOF. To prove this more precise claim, one need only note that after k 
iterations upper - lower = 2-‘SIZE(I, m) 5 2-‘iOPT~~(I, m). Since the schedule 
produced has length at most 

(1 + t)upper = (1 + E)(upper - lower + lower) 
I (1 + t)(2-“OPTMM(I, m) + OPT,+&, m)), 

we get the desired result. 0 

Notice that since the end goal of this approach is an t-approximation scheme, 
we could equally well create an f-approximation algorithm for the minimum 
makespan problem by using an t/Zdual approximation algorithm for the bin- 
packing problem, and then only O(log( l/c)) iterations are required to get a total 
relative error of E. Thus, the algorithm is a strongly polynomial one, in that we do 
not need to consider the lengths of the binary encoding of the given processing 
times. 

In the remainder of this section, we demonstrate that the techniques used above 
can be applied to problems other than minimum makespan problem. In order to 
help motivate this generalization, we refer frequently to the original application, 
but in a slightly different form. We view the bin-packing problem instance as 
specified by integral piece sizes ( pj) and an additional parameter d, the capacity of 
the bins. It is clear that this formulation is equivalent, since it amounts to no more 
than resealing both the piece and bin sizes. 

Consider the recognition or decision version of an optimization problem where 
there are two critical parameters-as before we had the capacity and the number 
of bins or machines allowed. There are two optimization problems that can be 
derived from the decision problem by fixing one of the two parameters and then, 
subject to this constraint, optimizing the other. We call one problem the dual of 
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the other. Let such a two-parameter recognition problem be denoted R( p, , p2). The 
primal problem shall be the one where pI is given as part of the input and p2 is, 
say, minimized - an instance is specified by an ordered pair (I, D,). Similarly, an 
instance of the dual problem consists of a pair (Z, p2) and the first parameter 
is minimized. Let OPT& 8,) and OPT&, Jo) denote the optimal values of 
the specified primal and dual problems, respectively. An c-(primal) approxi- 
mation algorithm for the primal problem is an algorithm that delivers a solution 
where the value of the first parameter is at most fii and the value of the second 
parameter, as derived by the algorithm and denoted PRIMALp,& J$), is at most 
(1 + E)OPT&~,). (A completely analogous statement could be made for the dual 
problem.) An t-dual approximation algorithm dual&Z, a2) for the dual problem is 
an algorithm that delivers a solution where the value of the first parameter, as 
derived by the algorithm and denoted DUALDJZ, a), is at most OPT,(I, a) and 
the value of the second parameter is at most (1 + ~)lj2. (Again, a similar situation 
applies to the primal problem.) We claim that finding c-(primal) approximation 
algorithm for the primal problem always can be reduced to finding an c-dual 
approximation algorithm for the dual. The following algorithm is nearly identical 
to the one discussed above. 

problem t-primal(Z, p,) 
begin 

upper := trivial upper bound 
lower := trivial lower bound 
repeat until (upper - lower) < precision bound 

begin 
p := (upper + lower)/2 
call dual,.,(Z, p) 
if DUALn,,(Z, p) > B, then lower := p 

else upper := p 
end 

output bound := upper 
(Note that at the end of the binary search, by a precision argument, upper is a lower 
bound as well.) 
call dual,,.,(Z, bound) 

end 

Using arguments identical to the particular application given before, it is straight- 
forward to see that this procedure is an e-approximation algorithm for the primal 
problem. Simply put, a dual approximation algorithm for the dual problem can be 
converted into a primal approximation algorithm for the primal problem. 

3. A Polynomial Dual Approximation Scheme for Bin Packing 
In this section, we give a polynomial t-dual approximation scheme for the bin- 
packing problem. By applying Theorem 1 we obtain a polynomial c-approximation 
scheme for the minimum makespan problem. The spirit of this scheme is based 
on a generalization of the ideas used in [8] and has a flavor similar to the one given 
in [2] for a (primal) t-approximation scheme for the bin-packing problem. Fur- 
thermore, techniques similar to the ones employed in this section date back at least 
to Ibarra and Kim [9], but it is only in recent work that the full power of these 
techniques has been understood. 

The result is presented in two parts: First we argue that the problem of finding 
an c-dual approximation algorithm can be reduced to finding an c-dual approxi- 
mation algorithm for the restricted class of instances where all piece sizes are 
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greater than 6, and then we give a polynomial scheme for this restricted class of 
instances. 

Suppose that we had an t-dual approximation algorithm for the bin-packing 
problem which worked only on instances where all piece sizes are greater than 6. 
Such an algorithm could be applied to an arbitrary instance I in the following way. 

Step 1. Use the assumed algorithm to pack all of the pieces with size >E. 

Step 2. For each remaining piece of size IE, pack it in any bin that currently 
contains I 1. If no such bin exists, start a new bin. 

First of all, it is easy to see that this procedure never packs any bin with more 
than 1 + L Since the algorithm used in Step 1 is a dual approximation algorithm 
and since the minimum number of bins for a subset of I is at most OPT&l), it 
follows that at most OPT&) bins are used in Step 1. Thus, if no new bins are 
used in Step 2, the algorithm presented is an c-dual approximation algorithm. 
Suppose now that a new bin was used in Step 2. This implies that the last piece 
packed could not fit in any started bin. Since the size of the piece is ccc and the 
extended capacity of the bin is 1 + c, it follows that every bin is filled to at least 
capacity 1 ! In other words, in this case it follows that the number of bins used is at 
most lx pjl and it is clear that fz pjl 5 OPTep(l). 

By the reduction given above, we need only produce an c-dual approximation 
algorithm for instances where all pieces are greater than t. 

Partition the interval of allowed pieces sizes (e, l] into s = ll/t*l equal length 
subintervals (E = I,, 14, (12, 131, . . . , &, 1,+, = 11. For a given instance 1, let bi 
denote the number pieces with size in the interval (/i, l/+1]. 

Consider any feasibly packed bin. Since each piece is of size greater than 6, 
there are at most Ll/4 pieces in this bin. Let x; denote the number of pieces with 
size in the interval (Ii, I,+,]. Each x; can assume one of at most rl/cl values in 
the interval [0, I/E), thus the configuration of the bin can be given by an s-truple 
(x,,x*,..*, x,). A configuration is said to be feasible if CL=l Xi/; I 1. It is easy to 
see that any bin that is packed feasibly (with total capacity used at most one) has 
a corresponding configuration that is feasible. A simple calculation shows that t, 

the number of feasible configurations is at most ll/~l’, which is a (rather large) 
constant for fixed E. 

Consider any bin B that is packed according to some feasible configuration 
(XI,..., x,). It is straightforward to see that 

C pj 5 ;!I Xilj+l I i$, Xi(li + t*) = i$l Xi/i + f* i Xi I 1 + t* f 
0 

=I+& 
jEB i=l 

(Note that the last inequality follows from the fact that CL, Xi is the number of 
pieces packed in B, which is at most l/f.) In other words, if the pieces are packed 
according to a feasible configuration, then the overflow in any bin is at most e. 
Therefore, if we find a partition of the pieces into feasible configurations that has 
the minimum number of parts, this would yield an +approximation algorithm. 
From a slightly different angle, this is nothing more than the bin-packing problem, 
where the piece sizes are restricted to be one of the s lower bounds Ii. Fortunately, 
this restricted bin-packing problem can be solved in polynomial time. 

Although it is well known that bin-packing with a fixed number of piece sizes 
can be solved in polynomial time, we give a dynamic programming algorithm here, 
for completeness. Let Bins(b, , . . . , bJ denote the minimum number of bins needed 
when there are bi pieces of size 1,. Then consider the pieces in the first bin to be 
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packed. They must correspond to a feasible configuration, so that 
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Bins(b,, . . . , b,)= 1 + min Bins(b, -x1, . . . . b,-x,). 
feasible 

configurations 
(s, ). .vJ 

Thus, in building the dynamic programming table, there are n” entries, each of 
which requires at most t I [l/c]” time to compute. As a result, the overall running 
time is O(t . ns) = O((n/c)“/‘*‘). Since for every fixed t > 0 this is polynomial, it 
follows that the family of algorithms forms a polynomial approximation scheme. 
It may also be useful to note that the O(n’) space requirements could be eliminated 
at the cost of performing the enumeration explicitly and thereby increasing 
the running time to O(n(‘l’)““). 

4. A l/5 Dual Approximation Algorithm for Bin Packing 

In this section we show how the central ideas of the general c-approximation 
scheme can be relined to give a (l/5 + 2-“)-approximation algorithm for the 
minimum makespan problem that runs in O(n(k + log n)) time. This performance 
guarantee is equivalent to the MULTIFIT algorithm, originally analyzed in [ 11. 
Significantly, the analysis of our algorithm is rather simple, especially when 
compared to the intricate weighting function techniques used in [4] to prove the 
l/5 bound for MULTIFIT. We are able to improve the efficiency of the algorithm 
for this case by examining the structure of feasible configurations much more 
closely and thus greatly reducing the number of types of configurations considered. 

As was done in the previous section, in order to get the approximation algorithm 
for the minimum makespan problem, we construct a l/j-dual approximation 
algorithm for the bin-packing problem when restricted to instances where all of the 
piece sizes are greater than l/5. We use the term k-bin to denote a bin that is 
packed with k pieces. It is convenient to use L[ul , . . . , uk] to denote the set of k 
distinct pieces (i, , i2, . . . , ik), where il is the largest available piece of size at most 
ul, where uI I u2 . . . 5 uk and pi, I . . . 5 pik. Consider the following algorithm. 
Unlike most other algorithms for bin packing, when a decision is made to pack a 
set of pieces together, they are placed in the bin and no other pieces will be added 
to the bin. 

Stage 1. While there is a piece j with pj E [0.6, 11, pack j with L[ 1 - p,], if such a piece 
exists. Otherwise pack j by itself. 

Stage 2. While there exist 2 pieces i, j with p,, p/ E [OS, 0.6), pack i and j together. 
{There may exist an odd number of pieces in [0.5, 0.6). For simplicity, we first assume that 
this is not the case.) 

Stage 3. {All remaining pieces are <OS.) While there exist three such pieces where the 
largest is at least 0.4, find L[O.3,0.4, 0.51 and pack them together. 

Stage 4. While there exists a piece with size in [0.4, 0.5), pack the largest two pieces 
together. 

Stage 5. {All remaining pieces are ~0.4.) Take the smallest piece j remaining. If 
pj > 0.25; pack all remaining pieces in 3-bins. Otherwise, p, = 0.25 - 6 for some 6 2 0. 
If three other such pieces exist, pack j with L[O.25, + 6/3, 0.25 + 6, 0.25 + 361. If such 
pieces do not exist, pack the remaining pieces in 3-bins. 

In order to prove that the above algorithm is a 1 /j-dual approximation algorithm, 
we must show two things-no bin is ever filled with more than 6/5 and that the 
number of bins used is at most OPT&l). The first is more straightforward, so we 
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begin with that. In Stage 1, it is clear that no bin is tilled with more than 1. In 
Stage 2, since any two pieces are each of size less than 3/5, a bin is filled to at most 
6/5. In Stage 3, by the choice imposed by the algorithm, the pieces sum to at most 
0.3 + 0.4 + 0.5 = 1.2 = 6/5. In Stage 4, since all remaining pieces sizes are less 
than l/2, the two largest sum to less than 1. Finally, in Stage 5, when we add the 
bounds together, we get 1 + 106/3. Since all of the piece sizes are more than l/5, 
6 < l/4 - l/5 = l/20 and 1 + 106/3 < 7/6 < 6/5. For a 3-bin packed in Stage 5, 
the total packed cannot exceed 3 . (0.4) = 1.2. 

In order to prove that the number of bins used is at most OPT,&), we show, 
roughly, that whenever a set of jobs is packed together and deleted from the 
instance 1, we get a new instance I’, such that OPT&I ‘) 5 OPTB,(I) - 1. Before 
considering the actions of each stage, we give two extremely useful principles that 
will enable us to carry out this strategy. 

COMPRESSION PRINCIPLE. If I2 is obtained from I, by changing the size of some 
piece j from pj to pj where pj L pj, then OPT&2) 5 OPT&I,). 

PROOF. The optimal packing of II remains feasible for 12, so the optimal 
packing for 12 can not use more bins. Cl 

DOMINATION PRINCIPLE. If(il, . . . . ik] are the only pieces in a bin in some 
optimal packing of the instance I, and j,, . . . , j, are distinct pieces such that 
pi, I pj, for all 1 = 1, . . . , k, then the instance I’ formed by deleting (j, , . . . , jk) 
from I is such that OPT&I’) 5 OPTsp(I) - 1. 

PROOF. (We can assume without loss of generality that, if p;, = pj,, then in fact, 
i, = j,.) We demonstrate that there is a feasible packing for I’ using OPT&I) - 1 
bins. Take an optimal packing where (il, . . . , ik] are the only pieces in some bin. 
Consider the packing of the other OPT&) - 1 bins. Let j, be some piece that is 
in the packing of these other bins. Replace j, by il. This packing must remain 
feasible, since pj, 2 pi,. In fact, by the additional assumption that, if pj, = pi, then 
j, = i,, it follows that pj, > pi,. (Otherwise, j, would have been packed in the 
(iI, . . . , ik] bin and would have been removed once and for all.) As a result, after 
a finite number of these replacements we get a feasible schedule for I’ using 
OPTBr(Z) - 1 bins. Cl 

Given the domination principle, it is easy to see that it is important to obtain 
upper bounds on pieces that can be feasibly packed together. The following lemma 
gives the required information. 

BOUNDING LEMMA. Consider a bin-packing instance where pieces are at 
least E. Let piece i be packed in a k-bin in some feasible packing, where pi L 1. 
Zf i,, . . . , ik-, are the k - 1 jobs packed with i, where pi, 5 . - . 5 pi,-,, then pi, I 
(1 -l-(j- l)c)/(k-j). 

PROOF. Consider piece ij. Each of the pieces i,, . . . , ij-, is at least c, so that 
the pieces i, il, . . . , ij-1 sum to at least 1 + (j - 1)~. This leaves at most 1 - 
(1 + (j - 1)~) for pieces ij, . . . , ik-, . Since ij is the smallest, it has.size at most the 
average of these pieces, which is at most (1 - I- (j - l)c)/(k - j). 0 

In particular, we have shown the following result. 

COROLLARY. If i is the smallest piece, and there exists a feasible packing where 
it is packed in a k-bin, then the pieces i,, . . . , k-, that it is packed with have 
processing times satisfying pi, 5 (1 - j . pi)/(k - j). 
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We can view the algorithm as producing a series of instances, I = lo, I,, 
. . . ) Iq = 0, where ZI consists of the pieces remaining to be packed, after the 
algorithm has packed 1 bins. For Stages 1, 2, and 4, we show that when a bin is 
packed to produce Z, from I,-, , OPT&l,) 5 OPTB&.+) - 1. For Stage 3 more 
careful analysis is required, and we show that either OPTBp(l,) 5 OPTBp(Z~-,) - 1 
or that another bin is packed by Stage 3, and OPTB&+,) I OPTB&-,) - 2. These 
claims imply that at the end of Stage 4, if p bins have been packed, OPT(I,,) 5 
OPT(Z) - p. In the last stage, we introduce another notion, QUASI-OPT(I) such 
that QUASI-OPT(I) 5 OPT(I) for all instances I. We shall show that QUASZ- 
OPT(I,+,) I QUASI-OPT(IJ - 1 for any instance I, where Stage 5 is applied. Thus, 
at the termination of the algorithm, 

OPT(I) L OPT(I,,) +p L QUASI-OPT(&) +p 
r(QUASZ-OPT(I,)+(q-p))+p=O+q-p+p=q. 

In other words, the number of bins packed q is at most OPT&Z). Thus, all we 
need to do is to consider each of the stages and verify the claimed inequalities, 
using the compression and domination principles. 

Stage 1. Here we can apply the domination principle. Consider the piece j. 
Since pj > 3/5, and all piece sizes are >1/5,j can be packed with at most one other 
piece. However, we pack j with L[ 1 - pj], the largest piece that j tits with. Thus, 
the piece sizes packed by the algorithm are at least as big as those in the optimal 
packing, so that the domination principle applies. (Notice that this includes the 
case where j is packed by itself in an optimal packing, since then we can view it as 
being packed with a piece of size zero.) 

Stage 2. We can view the action of this stage as follows. If i and j are to be 
packed together, first compress them both to have size l/2, and then pack them 
together. Let I denote the instance initially, let I, denote the instance after the 
compression, and let I, denote the instance with i and j deleted. By the com- 
pression principle, OPTBp(Zl) I OPTsp(l). Therefore, we need only show that 
OPTBp(Z2) I OPT&II) - 1. The following fact suffices to prove this. 

FACT. If pi = pj = l/2, then there exists an optimal packing where i and j are 
packed together. 

PROOF. The proof is by a standard interchange argument. Suppose the claim is 
false. In any optimal packing, the pieces that i is packed with total at most l/2, 
and the same is true for j. Thus we can change the packing so that i and j are 
packed together, and the two remaining “halves” are packed together, using no 
more bins than the original packing, which is a contradiction. Cl 

Stage 3. The proof for this stage is the most involved of any of the five. It is 
important to note that in any feasible packing any piece of size 20.4 must be 
packed in a bin with at most three pieces. Furthermore, if we use the bounding 
lemma with k = 3, I= 0.4, and c = l/5, we find that the two smaller pieces in a 
3-bin with a piece of size 20.4 must have sizes at most 0.3 and 0.4, respectively. 
As a result, if there is any possibility that the largest remaining piece can be packed 
in a 3-bin, the algorithm will, in fact, pack it in a 3-bin. Suppose that the instance 
remaining at this stage is denoted 1, and let i, j, and k be the three pieces packed 
together in this stage, where pi I pj 5 pk. We consider several cases; in each, we 
assume that the previous cases do not apply. 
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(1) k is the only piece in I with size in [0.4,0.5). 

In this case, j and k are the two largest pieces. Thus, if k is packed in a 2-bin in 
an optimal packing, these pieces are clearly dominated by j and k (and i is packed 
by the algorithm as well!). If k is packed in a 3-bin, the calculations given by the 
bounding lemma imply that i, j, and k dominate those pieces as well. In either 
case, deleting i, j, and k ensures that the minimum number of bins decreases. 

(2) There exists an optimal packing where k is packed in a 3-bin. 

This is also an easy case. By the application of the bounding lemma given above, 
it is clear that the jobs packed with k in the optimal packing must be dominated 
by i and j. 

(3) There exists a 4-bin in an optimal solution. 

Consider the four pieces in such a 4-bin. Since all pieces are greater than 0.2, it 
follows that the four pieces packed must each be at most 0.4. Furthermore, the 
smallest two must each be at most 0.3, since otherwise, the three largest must total 
more than 0.9, and the smallest is more than 0.2. (These are weak upper bounds, 
but they will suffice.) Since there is another piece 1 with pl > 0.4 (recall that Case 
(1) does not apply), the existence of the pieces in this 4-bin implies that the 
algorithm will pack three more pieces in Stage 3, say i’, j’, and k’. Since k and k’ 
are the two largest pieces in 1, we know that they dominate the pieces that are in 
the 2-bin containing k. (Recall that Case (2) does not apply.) Furthermore, we 
know that i’, i, j’, and j must dominate the pieces in the 4-bin. Therefore, by 
packing the two bins and deleting the six pieces, we know that minimum number 
of bins must decrease by at least two. 

(4) Everything else. 

Since (3) does not apply, we see that there is no 4-bin in any optimal solution. 
If there is also no 3-bin in the optimal solution, then clearly we are done, since any 
pair of pieces can be packed together, and by packing three pieces in one bin, we 
can only decrease the total number of bins used. If there is an optimal packing 
with a 3-bin, then, by a standard interchange argument, there is one where the 
smallest piece is in a 3-bin. However, since in any 3-bin the “middle” piece must 
be less than 0.4, we know that i, j, and k must dominate the piece sizes packed in 
such a 3-bin. 

Stage 4. Consider the largest remaining piece i. By the bounding lemma, we 
know that it cannot be feasibly packed in a 3-bin. (Otherwise, i would be packed 
in Stage 3.) Thus, by choosing the next largest piece to be packed with it, we are 
assured that the piece selected dominates the piece packed with i in an optimal 
packing. 

Stage 5. In this final stage, we use slightly more general tools. At this point, we 
know that any three pieces may be packed together (within the 6/5 bound) and 
that all pieces will be packed either in 3-bins or 4-bins (with the exception of at 
most one bin of “leftovers”). Thus, call a packing quasi-feasible if for any 4-bin, 
the capacity used is at most 1, but for any 3-bin the allowed capacity is extended 
to 6/5. Similarly, a quasi-optimal packing is a quasi-feasible packing that uses the 
minimum number of bins; let this minimum number be denoted QUASI-OPT(I). 
It is clear that QUASI-OPT(I) I OPT&Z). For this stage, we show that if we pack 
a set of pieces in a bin, then the value of QUASI-OPT decreases by at least one. It 
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is easy to see that analogous versions of the compression and domination principles 
hold for quasi-optimality. 

By a simple interchange argument, it follows that if there is a quasi-optimal 
packing that uses a 4-bin, then there exists a quasi-optimal packing where the 
smallest piece is packed in a 4-bin. Furthermore, if the smallest piece is packed 
(feasibly or quasi-feasibly) in a 4-bin, then it must have size 0.25 - 6 for some 
nonnegative 6. Thus, if the smallest piece has size greater than 0.25, we can 
conclude that there are no 4-bins in the (quasi-) optimal solution, and thus packing 
three to a bin is at least as good as is possible. 

Therefore, we need only worry about the case where the smallest piece has size 
0.25 - 6. We apply the corollary to the bounding lemma, with 1= E = 0.25 - 6 
and k = 4. We see that the three largest pieces in such a bin must be at most 
0.25 + 6/3, 0.25 + 6, and 0.25 + 36. As remarked above, if there is a 4-bin in the 
quasi-optimal solution, we can consider one where the smallest piece is packed in 
a 4-bin and thus, by the bounds given by the bounding lemma, we know that the 
algorithm will succeed in packing a 4-bin. Furthermore, the 4 pieces selected by 
the algorithm are guaranteed to dominate the pieces packed together in the quasi- 
optimal packing. If there is no 4-bin in the solution, since any three pieces fit 
together, it cannot increase the total number of bins used if we succeed in packing 
a 4-bin. 

In order to complete the description of the algorithm (and the accompanying 
proof that the packing produced uses at most OPT&Z) bins), we must consider 
the case in which there are an odd number of pieces to be packed in Stage 2. 
Consider the single remaining piece i with pi E [0.5, 0.6). It must be packed in a 
bin with at most three pieces. We can simply nondeterministically guess which 
kind of bin is correct and then continue accordingly. If the guess is that i is packed 
in a 2-bin, we simply pack i with the largest remaining piece. Domination ensures 
that, if the guess is correct, the number of bins in the optimal solution decreases 
by at least one. If the guess is that i is packed in a 3-bin, then pack i with 
L[O.25, 0.31. This can be shown to decrease the number of bins in the optimal 
packing by applying the bounding lemma with I= 0.5, k = 3, and t = l/5, and 
then invoking the domination principle. Of course, since the number of possible 
guesses is three, we need not consider the algorithm to be nondeterministic: We 
can simply try all three possibilities and choose the best packing. 

Finally, it is not hard to see that this algorithm can be implemented in O(n) 
time, if the pieces are given in sorted order. This implies that, for each iteration of 
the binary search, only O(n) time is required. By combining the results from this 
and previous sections, we have presented an algorithm for the minimum makespan 
problem that runs in time O(n(k + logn)) and produces a solution with makespan 
at most (6/5 + 2-“)OPTMM(I, m). By comparison, MULTIFIT runs in time 
O(n(k log m + log n)) to achieve the same performance. 

5. A l/6-Dual Approximation Algorithm for Bin Packing 

In this section we present a l/6-dual approximation algorithm for the bin-packing 
problem restricted to instances where all piece sizes are greater than l/6. Using the 
reductions presented in the earlier sections, this gives us both a l/6-dual approxi- 
mation algorithm for the unrestricted bin-packing problem and a l/6-approxima- 
tion algorithm for the minimum makespan problem. The techniques used in this 
section are natural generalizations of those employed in the previous section. 
Although the algorithm is still not entirely practical, since the running time of the 
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resulting approximation algorithm for the minimum makespan problem is 
O(n(m4 + logn)), this is still a significant improvement over the O(n3’j) algorithm 
given by the general scheme. This suggests that with further refinements, algorithms 
with very small error bounds, based on ideas similar to those employed here, can 
be made practical. 

Consider the following algorithm. We first present the algorithm as a nondeter- 
ministic algorithm; at certain points, the algorithm will be required to perform a 
guess operation, and for the proof of correctness of the algorithm, we assume that 
these guesses have been made correctly. For the actual implementation of the 
algorithm, we execute the algorithm for all possible guesses. In executing some 
choice for the guesses, it may become apparent that these are inappropriate, and 
in this case, the next guess is tried. The algorithm outputs the solution that uses 
the fewest number of bins. This ensures that the deterministic algorithm will use 
at most as many bins as the nondeterministic one. 

procedure l/6-dua/(Z) 
Stage 1. While there exists i such that p, E [2/3, 11, pack pi with L[ 1 - p,]. 
Stage 2. Guess the total number of l- or 2-bins in an optimal solution of the remaining 

instance. For each of these bins, pack it with L[ l/2,2/3], if such pieces exist; otherwise pack 
with L[2/3]. 
{For the remainder of the procedure, we restrict our attention only to packings where each 
bin contains at least three pieces.) 

Stage 3. (All remaining piece sizes are <2/3.) For each remaining piece i with size 
pi = l/2 + 6,6 2 0, pack i with L[ l/4 - 6/2, l/3 - 61. 

Stage 4. (All remaining piece sizes are <l/2.) Guess the number of 4-bins that 
contain a piece with size in the range [5/12, l/2) in an optimal packing. Pack each bin with 
L[7/36, 5/24, l/4, l/2]. 

Stage 5. For each remaining piece of size 5112 + 6, 6 2 0, pack it in a 3-bin with 
L[7/24 - 6/2, 5/12 - a]. 

Stage 6. {All remaining piece sizes are <5/l 2.) Guess the number of 3-bins in an optimal 
packing of the remaining instance. For each of these, pack it with L[ l/3, 5/12,5/12]. 
(For the remainder of this procedure we can restrict attention to packings where each bin 
contains at least four pieces.) 

Stage 7. For each piece i with size l/3 + 6, d > 0, pack i with L[2/9 - 613, l/4 - 612, 
l/3 - a]. 

Stage 8. {All remaining piece sizes are <l/3.) Guess the number of 5-bins that contain 
a piece with size in the range [7/24, l/3) in an optimal packing. Pack each such bin with 
L[ 17/96, 13/72,9/48, 5/24, l/3]. 

Stage 9. Take the largest remaining piece of size p, = 7124 + 6, 6 2 0 and pack i with 
L[ 17/72 - 6/3, 13/48 - 6/2, 7/24 + 61. Repeat this until all piece sizes are <7/24. 

Stage 10. Consider the smallest piece i. Ifpi > l/5, pack the remaining pieces arbitrarily 
four pieces per bin. Ifp, = l/5 - 6,6 > 0, then pack i with L[ l/5 + 6/4, l/5 + 26/3, l/5 + 
36/2, 7/24], if such pieces exist. Otherwise, pack the remaining pieces four per bin. 

To prove that this is a l/6-dual approximation algorithm, it is necessary to show 
that no bin is ever filled with more than 7/6, and that at most OPT&) bins are 
used. The first part of this is a straightforward exercise in arithmetic. To prove that 
no more than OPT,,(I) bins are used, we once again rely on the domination 
principle and the bounding lemma to show that, whenever the algorithm packs a 
bin, the number of bins in the optimal packing of the remaining instance decreases. 

It is very important to note how the guesses are used to refine the structure of 
the allowed packings. For example, in Stage 2, we guess the total number of I- and 
2-bins in an optimal packing. Therefore, in the remainder of the procedure, when 
we consider an optimal packing of the remaining packing, we can restrict attention 
to optimal packings that only use bins with at least three pieces. This guess begins 
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paying dividends immediately. In Stage 3, we consider pieces of size at least l/2. 
Since all pieces are greater than l/6, such a piece can be packed in bins with at 
most two other pieces. Therefore, we can conclude that this piece is indeed packed 
in a 3-bin, and the bounding lemma can be applied immediately. 

Initially, we know that each bin is packed with at most five pieces. The stages 
can be divided in the following way. In Stages 2 and 3, we pack pieces that can be 
either in 2- or 3-bins; in 4 and 5, we are restricted to 3- and 4-bins. Stage 6 ensures 
that we can later restrict attention to packings with only 4- and 5-bins. In Stage 7, 
we pack those pieces known to be in 4-bins. Finally, in the last three stages, we 
pack those pieces that can be in either 4- or 5-bins. In each case we use a judiciously 
selected guess to decide how to partition the pieces into k or k + 1 bins. Once the 
guess is made, it is a simple matter to apply the bounding lemma and the 
domination principle. To check the precise bounds is a straightforward, but tedious 
exercise. 

The only stage that requires a little more work is the final one. This stage is very 
similar to last stage of the l/5-dual approximation algorithm. As in that stage, it is 
convenient to define a notion of quasi-feasibility. In this case, we allow the 4-bins 
to be overpacked to 7/6, while restricting other bins to capacity 1. Using the 
resulting notion of quasi-optimality, it is not hard to use the domination principle 
and the bounding lemma to show that the number of bins in the quasi-optimal 
solution must decrease each time a bin is packed by the algorithm. 

In implementing the algorithm, as mentioned above, we must try all possible 
guesses. One very tempting improvement in the practicality of the algorithm would 
be to show that some monotonicity property exists, so that binary search could be 
employed, instead of this explicit search. 

When using the dual approximation algorithm within the procedure for the 
minimum makespan algorithm, it is clear that no guess greater than m need ever 
be considered. As a result, since the nondeterministic algorithm can be imple- 
mented in O(n) time once the pieces are sorted, we get the following result. 

THEOREM 2. The procedure l/6-dual yields an approximation algorithm for 
the minimum makespan problem that delivers a solution with makespan at most 
(l/6 + 2-k)OPTMM(I, m) and runs in O(n(km4 + logn)) time. 

6. Conclusions 

In this paper, we have presented several algorithms for the bin-packing and 
minimum makespan problems. Most important, we have shown that for any 
c > 0, there exists an efficient, that is, polynomial-time, algorithm that delivers an 
approximately optimal schedule for the minimum makespan problem that is 
guaranteed to have relative error at most E. In particular, we have shown how the 
framework of the scheme can be used to produce reasonably practical algorithms 
for E = l/5 and l/6. As was noted above, since the minimum makespan problem 
is strongly NP-complete, we cannot hope to improve the scheme significantly, in 
that the existence of a fully polynomial scheme would imply that P = NP. 

The key technique used in all of the algorithms presented here is that of a dual 
approximation algorithm. This notion is of fundamental importance, in addition 
to applications in the construction of primal approximation algorithms. For real- 
world problems, constraints are more often approximations to the real constraints, 
than restrictions that are rigid and inflexible. We have shown that for the bin- 
packing problem, the design and analysis of effective dual approximation 
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algorithms is significantly less difftcult and tedious than the best known practical 
methods for primal bin-packing approximation algorithms. Furthermore, we pre- 
sented a general framework for using dual approximation algorithms within tradi- 
tional approximation algorithms for closely related problems. It may well turn out 
for other problems, especially those where researchers have been stymied in the 
quest for good primal approximation algorithms, that the dual approach is the way 
to proceed. 

Appendix A 
In this appendix we provide the computations needed to prove the performance 
guarantee for l/6-dual(l). It will be convenient to let OPT&I, k) denote the 
optimal number of bins used when the constraint “all bins contain at least k pieces” 
is added to the usual bin-packing problem. It is important to note that the following 
generalization of the domination principle can be proved by the same argument 
used to prove the simpler form. We say that a set of pieces dominates another, if 
there is a l-l correspondence between the elements of the two sets so that each 
piece of the first set is at least as large as the corresponding piece of the second. 

Generalized Domination Principle. Let (i, , . . . , &I be the only pieces packed 
in some I bins of a feasible packing of the instance 1, where excluding these 
bins, the packing contains n, bins with r pieces. If (j,, . . . , jk) is a set of distinct 
pieces that dominate the set (i,, . . . , i,& then the instance I ’ formed by deleting 
tih . . . , j,) from I has a feasible packing such that nk k-bins are used. Further- 
more, there is a l-l correspondence between the bins of this feasible packing of I’ 
and the bins of the specified feasible solution of I that do not contain {i, , . . . , ik], 
such that corresponding bins contain the same number of pieces, and the pieces 
of a bin in I dominate the pieces of the corresponding bin for I’. 

Informally, this implies that we can add all sorts of “number of pieces-per-bin” 
constraints without affecting the validity of the domination principle. 

As was done for the l/5-dual approximation algorithm, we can view the algo- 
rithm as producing a sequence of progressively smaller bin-packing instances, 
I=ZrJ,I,, . . . , IP = 0, where for all j > 0 the pieces in &, - 4 are precisely the 
pieces packed in one bin. 

We show again that at each point the optimal value is decreased by one in Some 
sense. In the l/5 case the situation was somewhat easier, and only the usual 
OPTep(l) and the novel QUASI-OPT(I) were used. Here we use OPT&Z, k) for 
various values of k and a variant of the QUASI-OPT(Z) parameter used before. 
Finally, let j; denote the total number of bins packed by the algorithm 1/6-d& 
after stage i. 

Stage 1. This is the simplest of all the stages. Let I, denote the current instance. 
If pi E [2/3, I], since all pieces are greater than l/6, we know that i is packed in 
the optimal packing with at most one other piece. This piece can have size at most 
1 - pi, and we pack pi with the largest such piece. By the domination principle, 
the instance consisting of the remaining pieces, I,+, is such that OPTe&+J 5 
OPT&Z,) - 1. Inductively, it follows that OPT&,) 5 OPT&Z) - j,. It is trivial 
to see that no bin is packed in this stage with capacity more than 1. 

Stages 2 and 3. These two stages complement one another, so we present their 
analysis together as well. For the instance 4, consider an optimal packing that has 
as few l-bins as possible. Suppose that this optimal packing has k bins that are 
packed with one or two pieces, and assume that the guess in Stage 2 is k. In any 
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2-bin, the smaller piece must have size I l/2, and since all piece sizes are c2/3, 
the larger piece in a 2-bin has size less than 2/3. Note that, since all piece sizes are 
less than 2/3, it is impossible for there to be both l-bins and 3-bins in the optimal 
solution that we consider. (Otherwise, there is some piece of size <l/3 in a 3-bin 
that could be moved to a l-bin, thereby reducing the number of l-bins.) 

We first assume that there is a l-bin in the optimal solution. All of the bins in 
the specified optimal solution contain either one or two pieces, and the guess k is 
the number of bins in the optimal packing of the remaining instance. Suppose that 
this instance has p pieces with sizes in the range (l/6, l/2] and q pieces with sizes 
in the range (l/2, 2/3), and suppose that the algorithm was allowed to pack bins 
with L[ l/2, 2/3] for as long as possible, and then packed the remaining pieces one 
per bin. (In other words, the guess k is hypothetically ignored.) How many bins 
would the algorithm pack? If p 2 q, then every bin will be packed with two pieces 
(except possibly the last) and the total number of bins used is L(p + q)/2J. Given 
that there is an optimal solution using only I- and 2-bins, this must be no more 
than the optimal number of bins, k. Thus, in this case, the original algorithm packs 
all remaining pieces in a superoptimal number of bins. Suppose instead that 
p < q; in this case q bins are used by the algorithm, and this again must be at most 
the optimum number of bins since there can be at most one piece with size greater 
than l/2 in a bin. Therefore, if there is l-bin in the specified optimal solution, the 
algorithm completes the packing in Stage 2, using no more than the optimum 
number of bins. Since 2/3 + l/2 is 7/6, no bin is ever filled with more than 7/6. 

We must now consider the case in which there are no l-bins in the optimal 
solution selected. In Stage 2, we guess the number of l- or 2-bins, and thus the 
number guessed is simply the number of 2-bins in the specified optimal solution. 
As before, each of these 2-bins contains a piece <2/3 and a piece (l/2. Using the 
notation of above, by considering the specified optimal solution, we see that p L q 
and p + q 2 2k. These conditions ensure that all bins packed in Stage 2 have two 
pieces. Furthermore, the 2k pieces selected by the algorithm must dominate the 2k 
pieces packed in the specified optimal solution, and thus applying the generalized 
domination principle, we know that for the instance remaining after this stage, 
Ij,, there is a feasible packing using OPTsp(b,) - k bins, where each bin has at 
least three pieces. As a result, OPTep(li,, 3) 5 OPTBp(Zj,) - k. 

For Stage 3, we focus on OPT&Z,, 3). Consider any piece with pi = l/2 + 6, 
6 L 0. Since all pieces are greater than l/6, it cannot be packed in a 4-bin, so that 
for any restricted feasible packing (where each bin has at least three pieces), piece 
i is packed in a 3-bin. By applying the bounding lemma, we see that the smaller of 
the other pieces that i is packed with has size at most (1 - (l/2 + a))/2 = l/4 - 
6/2 and the larger has size less than 1 - (l/2 + 6 + l/6) = l/3 - 6. Since we pack 
i with the largest such pieces, we can apply the generalized domination principle 
to get that OPTBP(ZI,, , 3) d OPTBp(Z,, 3) - 1. By repeating this inductively, we see 
that at the end of Stage 3, OPTgp(lj,, 3) s oPT~p(li,, 3) - (j, - j,). 

Stages 4 and 5. We shall show that the pieces packed in these two stages 
dominate the pieces contained in bins with some piece at least 5/12 in some 
optimal solution of 4, (subject to the constraint that every bin has at least three 
pieces). The first trivial observation is that any piece with size at least 5/12 can be 
feasibly packed with at most 3 other pieces of size greater than l/6. Consider a 
feasibly packed 4-bin containing a piece i with pi E [5/12, l/2). The bounding 
lemma reveals that the other pieces in the bin have sizes at most 7/36, 5/24, 
and l/4. 
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Consider a packing corresponding to the optimal value OPTBp(lj,, 3). There is 
some number, k, of 4-bins that contain a piece of size in the range [5/12, l/2). 
Assume that the guess in Stage 4 is k. The pieces chosen in Stage 4 must dominate 
the pieces actually packed in the k bins of the specified optimal solution. In 
addition, the number of pieces of size [5/12, l/2) packed by the algorithm in Stage 
4 is k, which is the number of such pieces in the 4-bins of the specified optimal 
solution. This implies that there is a correspondence between the pieces with size 
in [ 5/ 12, l/2) remaining to be packed in Stage 5 and the pieces in this range packed 
in 3-bins in the optimal solution so that the pieces in the optimal solution dominate 
those left to be packed. 

It is easy to see that for each 3-bin in the specified optimal solution, a 3-bin will 
be packed in Stage 5, and the piece with pi L 5/12 used in Stage 5 will be no larger 
than the largest piece in the corresponding bin in the optimal solution. A simple 
application of the bounding lemma shows that any piece of size 5/12 + 6, when 
packed in a 3-bin, is packed with pieces no larger than 7124 - 612 and 5112 - 6. 
In Stage 5, we are packing a piece of size 5/12 + 6, where 6 is larger than the 
corresponding piece in the 3-bin of the specified optimal solution, and thus the 
bounds on the accompanying pieces are more generous. As a result, the pieces 
packed in Stages 4 and 5, together, must dominate the pieces occurring in bins 
with a piece of size at least 5/12 of the specified optimal solution. Applying the 
generalized domination principle, we get that OPT&lj,, 3) 5 OPTsp(h,, 3) - (Jo 
- j,). Finally, we note that 7/36 + 5/24 + l/4 + l/2 is (14 + 15 + 18 + 36)/72 = 
83172, and 5/12 + 6 + 7124 - 6/2 + 5/12 - 6 is 27124 - 612, both of which are 
less than 7/6. 

Stages 6 and 7. These two stages are fairly straightforward. Consider any 
optimal solution corresponding to OPT&li,, 3), and suppose there are k 3-bins in 
this solution. Once again, assume that the guess in Stage 6 is k. Since the smallest 
piece in any 3-bin is no more than l/3, and all pieces remaining are less than 
5/12, it is clear that the pieces packed in Stage 6 dominate the pieces packed in 
3-bins in our specified optimal solution. By the generalized domination principle, 
we know that there is a feasible solution, where every bin has at least four pieces, 
of the instance Z,,, which uses at most OPTBp(Ij,, 3) - k bins. In other words, 
OPT&li,, 4) I OPTBp(I,,, 3) - k. 

Any piece of size l/3 + 6, 6 2 0 cannot be packed with 4 other pieces of size 
greater than l/6. Thus in any packing corresponding to OPTS& 4) (for 1 L jb) 
we must pack any such piece in a 4-bin. Applying the bounding lemma, we see 
that the sizes of the other pieces in the bin are bounded from above by 2/9 - 6/3, 
l/4 - 6/2, and l/3 - 6. Thus, if we pack the piece of size l/3 + 6 with the largest 
such pieces, we can apply the generalized domination principle to see that 
OPTsrth+ I , 4) 5 OPT&I,, 4) - 1. Repeating this procedure, inductively we see 
that OPTop(Ij,, 4) zz OPT&l,, 4) - (j, - j,). 

To conclude these stages we must once again note that l/3 + 5/12 + 5/12 is 
14/12 = 7/6, and 2/9 - 6/3 + l/4 - 6/2 + l/3 - 6 + l/3 + 6 is (8 + 9 + 12 + 
12)/36 - (56)/6, which is at most 41/36 < 7/6. 

Stages 8 and 9. Consider a packing corresponding to OPT&b,, 4). Focus 
attention on the pieces of size at least 7/24 (and, of course, less than l/3, since all 
other pieces have been packed). Some are in 4-bins and the remainder are in 
5-bins. If such a piece is in a 5-bin, we once again apply the bounding lemma 
to discover that the remaining pieces are of sizes at most 17/96, 13/72, 9/48, and 
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5/24. (To remind the reader where these numbers come from, consider for example, 
the third largest piece; the smaller two pieces are each more than l/6, and the 
largest piece is at least 7/24. This leaves at most 9/24 for the remaining two pieces, 
and thus the smaller of the two is no more than 9/48. Or one may simply plug the 
suitable parameters into the bounding lemma.) Thus, if the optimal solution 
selected has k 5-bins with a piece of size at least 7/24, and the guess of Stage 8 is 
done correctly, the pieces packed in this stage must dominate the pieces in the k 
bins of the optimal solution selected. 

Next we invoke the strongest part of the generalized domination principle. We 
need something stronger than OPT&&, 4) I OPTi&lj,, 4) - k. Let OPT&(I, 4) 
denote the optimum value when we impose the additional constraint that any 
piece of size at least 7/24 must be packed in a 4-bin. In the specified optimal 
solution, except for the k 5-bins, all of these pieces are indeed packed in 4-bins. 
Thus we have a feasible solution for f = 4, - (i, , . . . , i,] where p bins are used, 
and no piece of size at least 7/24 is in a 5-bin. The generalized domination principle 
ensures that there is feasible packing of Ij, where there is a strong correspondence 
with j. Thus we have a packing of 1j* such that p bins are used, and for any 
5-bin of this packing, the pieces are no bigger than the corresponding packing of 
1, and thus no 5-bin contains a piece of size at least 7/24. Simply put, 
OPT&(& 4) 5 OPTBp(&, 4) - k. 

To complete Stage 9, the proof is fairly simple. Consider the largest piece i; if 
pi = 7/24 + 6, we consider packing it in a 4-bin. The bounding lemma shows that 
the other pieces in this bin are at most 17/72 - 6/3, 13/48 - 6/2 and pi. Thus, if 
we pack the largest such pieces, we can apply the generalized domination principle 
to get that OPT&(I,+,, 4) I OPT&& 4) - 1. Repeating this, inductively we 
show that OPT&(b9, 4) I OPT&(li,, 4) - (j, - j,). The weary reader may wish 
to verify that indeed the upper bounds ensure that no bin is ever packed with more 
than 7/6. Of course, the punch line is that since all pieces in li, are less than 7/24, 
it follows that OPT%&, 4) = OPT&l,, 4). 

Stage 10. In this stage we need to introduce a notion of quasi-feasibility. 
Call a bin-packing solution quasi-feasible if for all bins that contain live pieces, 
the capacity used is no more than 1, but for all other bins, the “capacity” used 
may be as much as 716. A quasi-optimal solution is a quasi-feasible solution that 
uses the minimum number of bins, QUASI-OPT(Z,). Clearly, QUASI-OPT&,) I 
OPTB&, 4). It is easy to see that since all pieces are smaller than 7/24, any four 
pieces can be packed together quasi-feasibly. This implies that if there is a quasi- 
optimal solution with a 5-bin, then there is one with the smallest piece in a 5-bin. 

Choose a quasi-optimal solution such that the smallest piece i is in a 5-bin, if 
possible. If there is no 5-bin, our algorithm must use no more bins than QUASZ- 
OPT(Z,), since packing a few bins with five pieces can only help us, because any 
four pieces can be quasi-feasibly packed together. Thus we may assume that the 
quasi-optimal solution selected does have a 5-bin containing the smallest piece. 
For one last time, apply the bounding lemma, to see that if pi = l/5 - 6, the other 
pieces of the bin have sizes at most l/5 + 6/4, l/5 + 26/3, l/5 + 36/2, and 7/24. 
We select the largest such pieces, so that with i, they must dominate the pieces in 
the bin with piece i of the specified quasi-optimal solution. Using a variant of the 
domination principle for quasi-feasibility (which follows directly from the gener- 
alized domination principle) we see that the new instance I,+, is such that QUASZ- 
OPT(I,+,) 5 QUASI-OPT(Z,) - 1. Applying this inductively, we see that the number 
of bins packed in this last stage jlo - j, is at most QUASI-OPT(I,,). 
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Of course, we must add l/5 + 6/4, l/5 + 26/3, l/5 + 36/2, 7/24, and l/5 - 6 
to get 1 + 1 l/120 + 176/12. Since 6 < l/30, we see that this sum is bounded by 
1 + 5/36 < 7/6!!!! 

This completes the proof of the guarantees of l/6-dual. By tracing through the 
inequalities proved for each stage, and combining them, the thorough reader can 
verify that in fact, the total number of bins packed is bounded by OPT&). The 
moral of this proof is not that it is true, but that it was somewhat mechanical (and 
still true). It is the hope of the authors that any reader who has reached this point, 
could in fact produce a l/7-dual algorithm that is moderately efftcient, by using 
nearly identical techniques. Furthermore, although the notation used in the proof 
is somewhat cumbersome, the intuition behind the proof, as given in the main 
portion of the paper, is very easy to understand. We believe that this is in sharp 
contrast to the weighting function techniques, where the intuition behind the 
arguments is only understood when all of the cases have been worked out scores 
of pages later. 
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