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ABSTRACT It IS shown that certain problems of optimal  preemptive scheduling of unrelated parallel processors 
can be formulated and solved as hnear  programming problems As a by-product of  the linear programming 
formulaUons of these problems, upper bounds are obtained on the number  of preempuons required for opt imal  
schedules In particular it is shown that no more than O(m 2) preemptions are necessary, m order to schedule n 
jobs on m unrelated processors so as to minimize makespan 
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1. In troduct ion  

The general problem we wish to deal with in this paper is that of  finding optimal 
preemptive schedules for independent jobs on unrelated parallel processors. We show that 
certain specific scheduling problems of  this type, e.g. minimization of  makespan, can be 
formulated and solved as hnear programming problems. We also show that the hnear 
programming formulations provide a means for establishing upper bounds on the number 
of  preemptions required for an optimal schedule. 

As part of  the general problem formulaUon, we assume that there are m processors ,  
indexed z = 1, 2 . . . . .  m, and n j o b s ,  indexed j = 1, 2 . . . . .  n. A processor can work on only 
one job at a time, and a job can be worked on by only one processor at a ume. The 
processing of  a job may be interrupted at any time and resumed at a later time, by the 
same processor or a different processor. There is no cost and no ume loss associated with 
such an interruption or "preemption." 

We assume that the input data for a problem instance include mn positive numbers p,~, 
wherep,j represents the total processing time required to complete job j, if the job is worked 
on excluswely by processor t. More generally, if processor i works on job j for a total time 
t,j, then ~t ~s necessary that 
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in order for the job  to be completed. 
We assume no particular relation between the Pv values. That is, the processors are 

unrelated. This Is in contrast to two more specialized cases, as follows. If, for all i, j ,  k, Pv 
= pkj, then the processors are identical. If  each Pu can be expressed in the form Pv = q,PJ, 
where q, (a "slowness factor") and pj are parameters associated with machine t and job  j ,  
then the machines are said to be uniform. 

For  a given feasible schedule, the last point in time at which job  j is processed is its 
completion ttme Cj The first and most important problem we wish to consider is that of  
finding a feasible schedule for which "makespan" or maximum completion time, 

C m a x  = max{C1), 
J 

is mimmlzed. We shall demonstrate that there is a polynomial  bounded reduction of  this 
problem to a linear programmmg problem. More specifically, we shall formulate a linear 
programming problem in mn + 1 variables and 2n + m (equahty and inequality) 
constraints. We shall then show that one can obtain an optimal schedule (via "open shop" 
theory) from an optimal solution to the linear programming problem. As a by-product  of  
this analysis, we prove that there exists a Cmax-opUmal schedule with no more than O(m 2) 
preemptions. 

These results are in contrast to the situation for identical and uniform processors. For  
identical processors, a very simple O(n) algorithm, due to McNaughton [4], yields a Cmax- 
optimal schedule with no more than m - 1 preemptions. Gonzalez and Sahni [2] have 
obtained a more complex O(n + m log m) algorithm for the case of  uniform processors, 
and show that no more than 2(m - 1) preemptions are required for an optimal solution. 

There is no known polynomial-bounded algorithm for the general hnear programming 
problem, nor has the problem been shown to be NP-complete. It follows that our solution 
to the Cmax problem for unrelated processors does not resolve the question of  whether the 
problem is either NP-complete or polynomial  bounded. However, in a later paper  we shall 
show that for  any f i xed  number of  processors m there is a polynomial-bounded algorithm. 
(Note: For  the case m = 2, there is a particularly efficient algorithm [3].) 

Following our discussion of  the Cmax problem, we consider extensions of  the hnear 
programming method of  solution to objective functions more general than Cmax. In 
particular we consider the problem of  minimizing 

Lm~x = max{Lj}, (1.1) 
J 

where 

L~ = Cj - d~ (1.2) 

denotes the lateness of job  j with respect to a gwen due date d~. Upper  bounds on the 
number of  preemptions required for an optimal schedule are obtained for this, and for a 
much more general class of  objective functions. 

2. Linear Programmmg Formulation of  Cmax Problem 

We suppose all jobs are available for processing at time t = O. Consider any feasible 
schedule of  n jobs  on m unrelated processors, where with respect to this schedule, 

tv -- the total amount  of  tmae that processor i works on j o b j .  

It is evident that the values of  Cm~x and t v for the schedule constitute a feasible solution to 
the followmg linear programming problem: 
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minimize 

subject to 

C~ax 

t-2L = 1, j - -  1, 2 . . . . .  n; (2.1) 
~-1 Jg~j 

tv --< Cmax, j = l, 2 . . . . .  n; (2.2) 

~ t v - <  Cmax, t = l, 2 . . . . .  m; (2.3) 
jzl  

tv>_ O. 

We assert that the converse IS also true. That  is, for any feasible solution to the hnear 
programming problem, there is a feasible schedule with the same values of  tv and Cmax. In 
order to prove this assertion, we solve what Gonzalez and Sahni [1] call the preemptive 
"open shop" scheduling problem. In Section 3 we indicate a solution to this problem, 
rather than merely referring to [l], m order to have the tools more readily at hand for 
obtaining a bound on the number of  preemptions required for an optimal solution. 

3. Construction of  a Feasible Solution 

Suppose we are given an m x n nonnegatlve matrix T = (tv) and a value Cm~x, where 

C m ~ x = m a x { m a x { ~ t v } , n ~ a x { ~ t v } } .  (31) 

We wish to show that it is possible to construct a feasible schedule with the given value of  
CMaX. 

The pertinent assumptions are as follows. Processor i is to work on job  j for a total 
amount of  time t v. A processor can work on only one job  at a time and a job  can be 
worked on by only one processor at a time. There is no restriction on the order in which 
a given job  can be worked on by the different processors, or on the order in which a given 
processor can work on jobs. (Hence the term "open shop.") There is no loss of  time 
occasioned by the mter rupaon or preemption of  jobs. All  jobs  are available for processing 
at time t = 0. 

Let us call row i (column j )  of  matrix T tight if  ~ / v  = Cma~ (,.~,t,j = Cm~x), and slack 
otherwise. Suppose we are able to find a subset of  strictly positive elements of  T, with 
exactly one element of  the subset in each tight row and in each tight column and no more 
than one element m any slack row or column. We shall call such a subset of  elements a 
decrementmg set, and use it to construct a partial schedule of  length 8, for some suitably 
chosen 8 > 0. In this part ial  schedule processor i works on job  j for min{tv, 8} units of  
time, for each element tv in the decrementing set. We then replace tv by max{0, tv - 8}, for 
each element in the decrementing set, thereby obtaining a new matrix T', for which C~ax 
= Cmax - 8 satisfies condition (3.1). 

For  example, suppose Cm~x -- 11 and 

( 3 @ 0  ~ , ,  
T= © 0 6  10, 

4 0 0 10 
11 4 6 10 

with row and column sums as indicated on the margins of  the matrix. One possible 
decrementing set is indicated by the encircled elements. Choosing 8 = 4, we obtain C~ax 
= 7 and T' as shown below, with the part ial  schedule indicated to the right: 

T ' =  0 ~ )  6 
0 0 6 

7 0 6 6 4 
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A decrementing set of ~r, is indicated by the encircled elements. 
There are various constraints that must be satisfied by 6, in order for C~ax ffi Cmax - 

to satisfy condition (3.1) with respect to T'. First, if tv is an element of the decrementing 
set m a tight row or column, then clearly it is necessary that 8 _< tv, else there will be a row 
or column sum of T'  which is strictly greater than Cm~x - 8. Similarly, if t,s is an element 
of the decrementing set m a slack row (slack column), then it is necessary that 

8 _< t v + Cmax -- Z t~k ( 6  ~ ttj ÷ Cmax - ~ tkj) .  
k k 

And if row i (column j )  contains no element of the decrementing set (and is therefore 
necessarily slack), it is necessary that 

t~ ~ Cmax - ~ tv (8 ~_ Cmax - Z tv). 
J 

Thus for the example above we have 

8_< t12 = 4, 8_< t21 = 4, 

8__< t34 + Cm~x -- ~ t3k = 7, 8 <-- ta4 + Cmax -- ~ tka = 7, 
k k 

8_< Cm~x- ~ tk3 = 5. 
k 

Suppose 8 ~s chosen to be maximum, subject to condmons indicated above. Then either 
T' will contain at least one less strictly positive element than T or else T'  will contain at 
least one more tight column or tight row (with respect to C~x) than T. It is thus apparent 
that no more than r + m + n iterations, where r is the number of strictly positive elements 
in T, are necessary to construct a feasible schedule of length Cmax. 

To illustrate this point, we continue with the example. Choosing 8 ffi 3, we obtain from 
T' the matrix T", with the augmented partial schedule shown to the right: 

( ~ 0 ~ 0 ~ 4  ~ 
T"= 0 3 

0 0 0 / 4  
4 0 3 4  4 6  7 

indicates idle time.) The final decrementing set yields the following (The symbol "if '  
complete schedule: 

2 1 4 
1 3 3 ] 0  
4 4 I ~ I 

4 6 7 10 

To complete our proof, we need the following lemma. 
LEMMA 1. For any nonneganve matrix T and Cm~ satisfying condition (3.1), there exists 

a decrementing set. 
PROOF. From the m x n matrix Tconstruct  an (m + n) x (m + n) matrix U, as 

indicated below: 

~Dol T ~) 

Here T t denotes the transpose of T. Dm and Dn are m x m and n x n diagonal matrices 
of nonnegative "slacks," determined in such a way that each row sum and column sum of 
U is equal to Cmax. It follows that (l/Cm~x)U is a doubly stochastic matrix. The well-known 
Birkhoff-von Neumann theorem states that a doubly stochastic matrix is a convex 
combination of permutation matrices. It is easily verified that any one of the permutation 
matrices in such a convex combination is identified with a decrementing set of  T. Q.E.D. 

There are several possible ways to construct a decrementing set. For our purposes, it is 
sufficient to note that one can construct the matrix U from T and then solve an assignment 
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problem over U, which can be done in polynomial time. This observation, together with 
the observation that no more than a polynomial number of  such assignment problems 
need be solved, is sufficient to establish a polynomial bound for the schedule construction 
procedure. Gonzalez and Sahni [1] have obtained time bounds of  O(r 2) and O(r(min{r, 
m 2} + m log n)), where r is the number of  strictly positive elements in T. 

4. Bounding the Number of Preemptions 

We now seek to estabhsh an upper bound on the number of  preemptions required for a 
Cmax-optimal schedule on unrelated parallel processors. 

To be precise, we say that a job ispreempted at time t if execution of  the job is suspended 
on some processor at time t before its completion. If  a processor begins or resumes 
execution of  a job at time t' and its processing is continuous until time t, when the job is 
either completed or preempted, then [t', t] is called an active period for the job. The total 
number of  preemptions in a schedule is thus equal to the total number of  active periods in 
excess of  n. 

Now consider the linear programming problem formulated in Section 2. This problem 
has n equality constraints (2.1), m inequality constraints (2.2), and m inequahty constraints 
(2.3). It follows from elementary linear programming theory that there exists an optimal 
basic solution with no more than n + r2 + ra strictly positive variables, where r2 and ra 
denote the number of  inequality constraints (2.2) and (2.3) which are satisfied with strict 
equality. Clearly 0 _< r3 ~- m. If  n > m, 0 <_ r2 ~- m -- 1. And if n _< m, at most m - 1 
constraints (2.2) are nonredundant. It follows that there is an optimal solution with at most 
n + 2m - 1 strictly positive variables, one of  which is Cmax. 

We may thus assume there exists an optimal solution to the linear programming problem 
with no more than n + 2(m - 1) strictly positive tv values. If  we could construct a schedule 
(with the given value of  Cma~) with exactly one active period for each positive tv value, 
then we should have an upper bound o f2 (m - 1) on the number of  preempUons reqmred 
for a Cm~x-optimal schedule. However, the schedule construction procedure generally 
introduces addmonal preemptions. We must now establish an upper bound on this number. 

We shall propose a variation of  the schedule construction procedure, with the objective 
of  reducing the number of  preemptions in the resulting schedule. (This variation also 
happens to admit a better polynomial bound on its running Ume, but this is not our 
pnncipal concern here.) What we shall do is replace all of  the jobs which are represented 
by a single positive tv value by m dummy jobs. We shall then apply the schedule 
construction procedure to find a feasible schedule with these dummy jobs. Finally, we 
shall create a schedule for the original set of  jobs by reassigning the active periods for the 
dummy jobs to the jobs which they replaced. 

Consider the example from the previous section where Cmax ffi 11 and 

T =  4 0 6 10 
4 0 0  10 
11 4 6 10 

(This is actually not a basic feasible solution to the linear program, but this is of  no 
consequence.) Let us remove the columns containing exactly one strictly positive tv value 
and add dummy columns, to obtain the matrix T': 

T ' =  4 0 0 7 11. 
4 6 0 0 II  
11 10 4 7 1 

The indices of  the jobs identified with the first two columns of  T'  are 1 and 4. Let us 
assign indices 1', 2', 3' to the dummy jobs. Note that we have given the dummy jobs tv 
values so that all rows of  T' are tight. 

The schedule construction procedure applied to T' yields as a schedule: 
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4 6 7 11 

We now fill in the active periods for the d u m m y  jobs  with active periods for the jobs  
which they replaced, plus idle time, obta in ing  the same schedule as we happened  to ob ta in  
by the original procedure: 

4 6  710 11 

In  the case of  this example, a schedule was constructed for the matr ix  T '  in  which there 
were no preemptions of  the d u m m y  jobs. Hence it was possible to create a schedule for the 
original set o f  jobs  m which there were no preemptions  of  any  of  the jobs  which the 
d u m m y  jobs  replaced. In  general  the n u m b e r  of  preemptions  required for the original  set 
of  jobs  is bounded  by the n u m b e r  of  preemptions  m the schedule constructed for the 
matrix Z'.  

The matrix T '  has at most m + r2 + r3 - 1 columns and  at most m + 2(rz + r3 - 1) 
strictly positive elements. Each i teration of  the schedule construct ion procedure either 
reduces an element  of  the T '  matrix to zero, or causes an  addi t ional  co lumn to become 
tight. Exactly m elements become zero at the last iteration. Hence there are at most  2(r2 
+ r3) - 1 iterations of  the first kind. There are m - r2 i terauons of  the second kind, and  
hence no more than m + rz + 2r3 - 1 xterations in all. Each i terat ion introduces at most m 
active periods into the resulting schedule, so there are at most m(m + r2 + 2r3 - 1) active 
periods in all. The n u m b e r  of  active periods in excess of  m + r2 + r3 - 1, and  hence the 
n u m b e r  of  preemptions,  is thus bounded  by m(m + r2 + 2r3 - 1) - (m + r2 + r3 - 1). 
Taking r2 = m - 1, r3 = m, we have the following theorem. 

THEOREM 1. An upper bound on the number of  preempttons reqmred for  a Cm,x-optimal 
schedule on unrelated processors is 4m z - 5m + 2. 

The bound  indicated by the theorem is certainly not  tight, inasmuch as it is known  that 
no more than  2 preemptions are reqmred for the case m = 2 [3]. Moreover,  we have not  
been able to estabhsh that O(m 2) preemptions may be reqmred for an  opt imal  schedule, or 
even that more than 2(m - 1) may  be necessary. 

5. The Lmax Problem 

We now formulate a l inear  p rogramming  problem to minimize  L . . . .  as defined by (1.1) 
and  (1.2). 

Assume the jobs  are numbered  in nondecreasing due date order, i.e. dl -< d2 _< _< dn. 
Let 

t") = the total amoun t  of  t ime that processor i works on  j o b j  m the t ime period [0, dl g 

+ Lmax], 

and, for k = 2, 3 . . . . .  n, let 

tlk) = the total amoun t  of  t ime that processor i works on  j o b j  m the t ime period [dk-1 q 

+ L  . . . .  dk+Lmax]. 

Then  we have the hnear  programming problem 

minimize  Lmax 

subject to 

m ~ t(k) 
'J ---- 1, j =  1,2 . . . .  n; 

t--1 k--I pq 
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t~: 1) --< d l +  L . . . .  

~ t (k~ < dk - dk-1, t 1 
t e l  

It  

"~:'~1) --< ul ~ + Lmax, 
J--I 

rt 

t tk)~., --< dk -- dk-1, 
j - k  

t(k) > O. 

j = 1, 2 . . . . .  n; 

j = k , k +  1 . . . . .  n, k = 2 , 3  . . . . .  n; 

i =  1, 2, . . . ,  m; 

i =  1 , 2 , . . . , m ,  k = 2 , 3 , . . . , n ;  

Gwen  an optimal soluuon to this linear programming problem, an Lm~x-optimal schedule 
can be obtained by applying the schedule construction procedure of  Section 3 to each 
matrix T ~k~ . ~h~ = ( t , j ) ,  k = 1, 2 . . . . .  n. Letp(m,  k) _< O(m 2) be an upper bound on the number  
of  preemptions required for the subschedule constructed from T ¢k). Then an upper bound 
on the total number  of  preemptions required for an Lm~x-optimal schedule can be seen to 
be 

2(m - l)n + ~ p(m, k) _< O(m2n). 
k--I 

It is not difficult to construct examples for which O(n) preemptions are necessary for an 
Lm~x-optimal schedule. 

6. Costs of  Processing 

The linear programming formulations we have obtained suggest that we might include a 
"cost of  processing" in the objective functions for these problems. Let % = the cost of  
processing job  j on processor i for one unit of  time. Then, for example, rather than only 
minimizing//max, we may choose to minimize 

L m a x + ~ V "  t ~k) l .a  ~ t J  ~d . 
t j k 

It is  a well-known fact that the convex combmauon of  any two feasible soluuons to a 
linear programming problem is also a feastble solution. Thus, ff L . . . .  T and L'max, T'  are 
feasible solutions, then so is hLmax + (1 - h)L~ax, h T  + (1 - h)T',  for any h, 0 _~ h _< 1. 

Let us say that (L, C) is a feasible pair of  values if  there exists a feasible schedule for 
which 

c t ~k) < C, L~ax _< L. 2 2 2  ,~ ,J - 
t j k 

The preceding remarks about convexity indicate that the feasible points (L, C) form a 
convex region in the plane, as indicated in F~gure 1. Or, to put  it another way, if  L(C)  
denotes the mimmum attainable value of  L . . . .  over all schedules with cost of  processing 
not exceeding C, then L is a convex funcUon of  C. 

7. A General Bound on the Number of  Preemptions 

We shall now obtain an upper bound on the number  of  preempuons required for an 
optimal schedule, with respect to a very broad class of  opUmization criteria. Specifically, 
we suppose that we wish to find a schedule which minimizes 

f(C1, C2 . . . . .  Cn) + 2 2 c,,t,,, 
t j 

w h e r e f i s  a monotone nondecreasing, but otherwise arbgrary,  function of  the completion 
times of  the jobs, and % is defined as m the previous section. 
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Suppose there is an optimal schedule with completion times C~', C~, . . . ,  C~*. We can let 
these completion times assume the roles of  deadlines and solve a linear programming 
problem of  the form described in Section 5. The schedule construction procedure can then 
be applied to obtain an optimal schedule for which we can bound the number  of  
preemptions as follows. From our previous observations, we have the following theorem: 

THEOREM 2. For any monotone nondecreasingfunctton f and coefficients c,:, there exists 
an optimal schedule m which the number of preemptions is bounded by 

n 

2(m - l)n + ~ p(m, k) _< O(m2n), 
kll 

where p( m, k) ts an upper bound on the number of preemptions required for a C~ax-optimal 
schedule for k jobs on m unrelated processors. 

Theorem 2 can easdy be generalized to the case in which we seek to minimize 

f(S~, Se . . . . .  S,, C1, C2 . . . . .  Cn) + ~ ~ c,:t,:, 
t J 

where f is monotone nonincreasing in the starting times Si, $2 . . . . .  Sn and monotone 
nondecreasing in the completion times Ci, C2, .. , Cn We leave details to the reader. 
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