Basics of Algorithm Analysis

- We measure running time as a function of \(n \), the size of the input (in bytes assuming a reasonable encoding).

- We work in the RAM model of computation. All “reasonable” operations take “1” unit of time. (e.g. +, *, -, /, array access, pointer following, writing a value, one byte of I/O...)

What is the running time of an algorithm

- Best case (seldom used)
- Average case (used if we understand the average)
- Worst case (used most often)

We measure as a function of \(n \), and ignore low order terms.

- \(5n^3 + n - 6 \) becomes \(n^3 \)
- \(8n \log n - 60n \) becomes \(n \log n \)
- \(2^n + 3n^4 \) becomes \(2^n \)
Asymptotic notation

big-O

\[O(g(n)) = \{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that} \]
\[0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \} .\]

Alternatively, we say

\[f(n) = O(g(n)) \text{ if there exist positive constants } c \text{ and } n_0 \text{ such that} \]
\[0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \} .\]

Informally, \(f(n) = O(g(n)) \) means that \(f(n) \) is asymptotically less than or equal to \(g(n) \).

big-Ω

\[\Omega(g(n)) = \{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that} \]
\[0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \} .\]

Alternatively, we say

\[f(n) = \Omega(g(n)) \text{ if there exist positive constants } c \text{ and } n_0 \text{ such that} \]
\[0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \} .\]

Informally, \(f(n) = \Omega(g(n)) \) means that \(f(n) \) is asymptotically greater than or equal to \(g(n) \).
\textbf{big-Θ}

\[f(n) = \Theta(g(n)) \text{ if and only if } f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n)). \]

Informally, \(f(n) = \Theta(g(n)) \) means that \(f(n) \) is asymptotically equal to \(g(n) \).

\textbf{INFORMAL summary}

- \(f(n) = O(g(n)) \) roughly means \(f(n) \leq g(n) \)
- \(f(n) = \Omega(g(n)) \) roughly means \(f(n) \geq g(n) \)
- \(f(n) = \Theta(g(n)) \) roughly means \(f(n) = g(n) \)
- \(f(n) = o(g(n)) \) roughly means \(f(n) < g(n) \)
- \(f(n) = w(g(n)) \) roughly means \(f(n) > g(n) \)

We use these to classify algorithms into classes, e.g. \(n, n^2, n \log n, 2^n \).

See chart for justification