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1. Problem 13.30. Most vital arcs.

FindMostCritical(G = (V,E)), c

� Assumes that E is in the form of an adjacency list,
� For a node v, AE(v) is all the edges incident to v.
T be the edges of an MST of G � Use your favorite algorithm
F ← E � Working copy of the adj. list
U ← V � Working copy of the node list
while |U | > 1 � while U is not a single node

do

Set s← some leaf of MST
E(s)← e ∈ AT (s). � only one since s is a leaf
Contract(s, T, F, c)

t← arg maxs{D(s)}
return E(t)

Figure 1: Procedure FindMostCritical(G)

Contract(s, T, V,E, c)

� This contracts the node and preserves the non-tree arc costs with the
� smallest values. Note that s is assumed to be a leaf
Note that AT (s) = (s, u)
for (s, j) ∈ AE(s) \ ({(s, u)} ∪AT (u))

do

if (u, j) ∈ AE

then c(s, j)← min{c(s, j), c(u, j)
else AE(u)← AE(u) ∪ {(s, j)}

E ← E \ {(s, j)}

V ← V \ {s}
T ← T \ {(s, u)}
return T, V,E

Figure 2: Procedure Contract(s, T, V,E, c)
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We first show that FindMostCritical returns the most critical arc.

Lemma 1 If a most critical arc exists in a graph, FindMostCritical will find it.

Proof: Consider a graph G = (V,E) with a given MST, (V, T ). Note that, if a most critical arc exists
in this graph, the arc most be in any MST for the graph, as deleting the most critical arc changes the
cost of the MST, whereas deleting a non-tree arc will not change the cost of the MST. Then, the cut
[I, J ] formed by removing an arc (i, j) ∈ T . Note that I := {v ∈ V : ∃ a path from v to i in T}, and
J = V \ I. In this graph, the Cut Optimality conditions indicate that a new MST can be formed by
adding the minimum cost arc that crosses [I, J ] to T . The arc corresponding to the tree arc with the
largest differential between its cost and the arc with the next smallest cost along the cut is the most
vital arc. FindMostCritical does exactly this, by choosing a leaf arc and examining the edges in
the cut set formed.

To complete the proof, we note that any minimum spanning tree always has at least two leafs, and
a straightforward recursive argument shows that Contract preserves the spanning tree property of
T on the contracted graph. Moreover, Contract preserves the minimum cost non-tree arcs for the
subsequent node sets in its update.

Note that FindMostCritical cannot take advantage of sparseness, since Contract (possibly) cre-
ates new neighbors. We formalize this in the following lemma.

Lemma 2 FindMostCritical has a runtime of O(n2).

Proof: Each tree arc is examined once in the outer loop of FindMostCritical. In Contract,
each neighbor of s is examined and made a neighbor if its tree neighbor. Since there n − 1 possible
neighbors of s, and each time a neighbor is examined it incurs O(1) work, the runtime per tree arc is
O(n), which results in a total runtime of O(n2).

Lemmas 1 and 2 allow us to conclude that FindMostCritical runs correctly in O(n2) time. An
interesting question is whether an O(m) algorithm exists.

2. Problem 13.34. Balanced Spanning Trees.
Our algorithm forms an MST on the input graph, sorts the edges in ascending cost order, and then,
iteratively tries to improve the MST in the following manner. In the sorted order, we will remove an
arc from the MST, form the resulting cut with respect to the MST, and add the lowest cost edge. This
forms a new spanning tree that is also an MST with respect to a certain subgraph. We compute the
difference between smallest and largest cost edge on this tree and repeat. Figure 3 encodes this in a
more precise manner.

We can use Kruskal’s or Prim’s algorithm for finding MST at line 1, both of which run in O(m+n log n)
time. To sort the edges at line 2 requires O(m log n) time, and computing the minimum and maximum
tree cost edge (line 3 in the loop requires O(n) time. If the new tree is an improvement, then we require
an additional O(1) + O(n) time for lines 4 and 5. Checking to see if (i, j) ∈ T at line 6 and forming
the cut sets I and J at line 7 requires another O(n). To this point, our operations require O(n) time
in the loop and O(m log n) out of the loop, for a total runtime of O(nm). Our bottleneck occurs on
line 8, where we require O(m) to find the minimum cost edge crossing the cut, [I, J ]. Because of this
step, our algorithm runs in O(m2).

Lemma 3 FindBalancedTree runs in O(m2).

Correctness follows from the following lemma:

Lemma 4 A most balanced trees on (V,E, c) is either an MST on the graph (V,E(s), c) where d(s)
corresponds to the minimum cost edge of the balanced tree, and E(s) is defined in line 10 of Find-

MostBalanced, or it can be converted to an MST on (V,E(s), c) which is also a most balanced tree

on (V,E, c).
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FindBalancedTree(V,E, c)

� Finds the most balanced tree in (V,E)
� We assume (V,E) is connected

1 Let T ← MST on (V,E, c).
2 Let d be an array of pointers to the edges sorted in order of c.

α← c(d(m))− c(d(1)) + 1 � the best gap
s← 0 �

for k = 1, . . . ,m
do

3 Compute: β := max{c(e) : e ∈ T} −min{c(e) : e ∈ T}
if (β < α),

then

4 α← β

5 s← arg mint{t : d(t) ∈ T, t = 1, . . . , n}

6 if
(

(i, j) = d(k) ∈ T
)

then

7 Form I ← {u ∈ V : ∃path from u to i in T}, J ← V \ I

8 Let (u, v) = arg min(a,b){c(a, b) : a ∈ I, b ∈ J, (a, b) 6∈ T

9 T ← (T \ {(i, j)}) ∪ {(u, v)}

10 return MST on (V, c, E(s) ≡ {e ∈ E : c(e) ≥ c(d(s))})

Figure 3: Procedure FindBalancedTree(V,E, c)

Proof: Consider a most balanced tree, T , on (V,E, c), and note that T must also be a most balanced
tree on (V,E(s), c). Then suppose it was not an MST on (V,E(s), c), and note, by the equivalence of
the path optimality conditions, there must exist nodes u to v such that c(u, v) < c(e) for all e on the
path from u to v in T . But, adding c(u, v) to T , and removing the nonessential arc on the resulting
cycle creates a new tree which is at least as balanced as T . We can repeat this until we have a tree
which satisfies the path optimality conditions for (V,E(s), c).

Each time FindMostBalanced computes a new tree at line 9, the new arc added will cause the tree to
satisfy the cut optimality conditions for the subgraph (V,E(d(k)). Thus, FindMostBalanced finds
the most balanced tree amongst the MSTs for the graphs from the set: {(V,E(d(k)) : k = 1, . . . ,m}.
But then Lemma 4 implies the correctness of the algorithm. Together with Lemma 3, this implies that
FindMostBalanced runs correctly in O(m2) time.
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