
Basics of Algorithm Analysis

• We measure running time as a function of n, the size of the input (in

bytes assuming a reasonable encoding).

• We work in the RAM model of computation. All “reasonable” oper-

ations take “1” unit of time. (e.g. +, *, -, /, array access, pointer

following, writing a value, one byte of I/O...)

What is the running time of an algorithm

• Best case (seldom used)

• Average case (used if we understand the average)

• Worst case (used most often)

We measure as a function of n, and ignore low order terms.

• 5n3 + n− 6 becomes n3

• 8n log n− 60n becomes n log n

• 2n + 3n4 becomes 2n



Asymptotic notation

big-O

O(g(n)) = {f (n) : there exist positive constants c and n0 such that

0 ≤ f (n) ≤ cg(n) for all n ≥ n0} .

Alternatively, we say

f (n) = O(g(n)) if there exist positive constants c and n0 such that

0 ≤ f (n) ≤ cg(n) for all n ≥ n0}

Informally, f (n) = O(g(n)) means that f (n) is asymptotically less than or

equal to g(n).

big-Ω

Ω(g(n)) = {f (n) : there exist positive constants c and n0 such that

0 ≤ cg(n) ≤ f (n) for all n ≥ n0} .

Alternatively, we say

f (n) = Ω(g(n)) if there exist positive constants c and n0 such that

0 ≤ cg(n) ≤ f (n) for all n ≥ n0} .

Informally, f (n) = Ω(g(n) means that f (n) is asymptotically greater than

or equal to g(n).



big-Θ

f (n) = Θ(g(n)) if and only if f (n) = O(g(n)) and f (n) = Ω(g(n)).

Informally, f (n) = Θ(g(n) means that f (n) is asymptotically equal to g(n).

INFORMAL summary

• f (n) = O(g(n)) roughly means f (n) ≤ g(n)

• f (n) = Ω(g(n)) roughly means f (n) ≥ g(n)

• f (n) = Θ(g(n)) roughly means f (n) = g(n)

• f (n) = o(g(n)) roughly means f (n) < g(n)

• f (n) = w(g(n)) roughly means f (n) > g(n)

We use these to classify algorithms into classes, e.g. n, n2, n log n, 2n.

See chart for justification


