Shortest Augmenting Path Algorithm

res. graph
$d(v)$ distance from v to t

- $d(s) = 1$
- $d(t) = 2$
- $d(s) = 4$
- $d(s) = 5$
- $d(s) = 9$
Lemma: For every v, $f(v)$ never decreases.

Pf:
- f dist. before an aug. path
- f' dist. after

Suppose some $f(v)$ decreases, let v be the one with minimum $f(v)$ to decrease.

If (v, w) is in G_f but not $G_{f'}$, then we sent flow on (w, v) in the augmentation. Then $\delta'(w) = 6$, contradicts $\delta'(w) = 3$. Contradiction.
- $d(v)$ never decreases
- For each v, $d(v)$ increases $\leq n$ times.
- Total # of times that any $d(v)$ increases $\leq n^2$.

If a push sends $U_f(v,w)$ flow from v to w, we call it saturating.
Facts

1) Between any 2 saturations of (v,w) or (w,v), either $d(v)$ or $d(w)$ must increase by 2.

$\#$ saturations of $(v,w) or (w,v) \leq n$

2) Every aug. path saturates at least 1 residual edge.

$\#$ aug paths $\leq \#$ saturations

$\leq \mathcal{O}(nm)$

$= \mathcal{O}(nm)$

R.T is $\mathcal{O}(nm^2)$

Edmonds, Karp
72
\(O(n^2 m) \) a little careful

Blocking Flows - send along "all" shortest paths simultaneously

Repeat \(n \) times

Data Structures
Scaling of capacities

Consider highest order bit 1. Solve

Update add a bit to u double the flows or doubles $u + 1$
1. Correctly compute a max flow
 - always feasible
 - always sending flow on a residual path in G_f

2. Running time $\log U$ iterations of scaling

 Each iteration is a sequence of x augmenting paths

 Bound how much flow gets sent in an iteration

 \[
 f = \min cut
 \]

\[
uf(vw) \leq u(vw) + 1
\]

\[
u_f(S, T) \leq m.
\]
\[\exists \text{ a cut in } G_f \text{ w/ } u_f(\delta(T)) \leq m \]

\[\therefore \text{ total flow we can send in } G_f \leq m \]

\[\therefore \text{ at most } m \text{ iterations of aug. paths.} \]

\[\mathcal{O}(m^2 \lg n) \text{ time} \]