Choosing which vertex to call Discharge(v)

1) FIFO

Q: 2 3 4 5 6

Phase 1: nodes added to Q in initializing
Phase i: nodes added during phase i-1
Claim: The number of phases is $O(n^2)$.

Proof: \[\Phi = \max \{ d(v) : e(v) > 0 \} \text{ on } Q \]

Look at Φ during a phase.

Case 1: A relabeling occurs during the phase.
Happens $\leq 2n^2$ times. Total increase in Φ in these phases $\leq 2n^2$.

Case 2: No relabeling occurs during the phase.

\[e = 4 \]

\[v_6, v_{10}, v_{12} \text{ active} \]

\[d(v_5) = 8, d(v_{10}) = d(v_{12}) = 7 \]

Vertices with $e(v) > 0$ at the start of the phase do not have excess at the end of the phase.

No new excess at Φ or higher.

\[\Phi \text{ decreases by at least 1.} \]
\[\phi_{init} \leq n \]
\[\phi_{final} = 0 \]

Total increase in \(\phi \leq 2n^2 \)

Total decrease in \(\phi \leq 2n^2 + n - 0 \leq 3n^2 \)

Each phase with a relabeling decrease \(\phi \) by \(\geq 1 \).

\[\therefore \leq 3n^2 \text{ phases with a relabeling.} \]

\[\therefore \leq 5n^2 \text{ phases overall.} \]
\[\# \text{n.s. pushes per phase} \leq \eta \]

\[\# \text{n.s. pushes per Discharge}(v) \leq 1 \]

\[\# \text{calls to Discharge per phase} \leq \eta \]

\[\# \text{of n.s. pushes} = \mathcal{O}(\eta^3) \]
\[n^m \text{ sat. pushes} \]
\[n^m \text{ overhead} \]
\[n^m \text{ related} \]
\[n^3 \text{ n.s. pushes} \]

\(O(n^3) \) time.

\[n^2 m \]
Excess scaling

\[
e_{\text{max}} = \max \{ e(v) \}
\]

Only push flow from vertices \(v \) if \(e(v) \approx e_{\text{max}} \)

Gradually decrease \(e_{\text{max}} \)

\(\Delta \) an upper bound on \(e_{\text{max}} \)

A node \(v \) with \(e(v) \geq \frac{\Delta}{2} \) has large excess

\(e(v) < \frac{\Delta}{2} \) \(\Rightarrow \) small excess
Invariants to maintain:
1) only push flow from nodes w/ large excess
2) never let $e(v) > \Delta$ for any v

\[e(u) = \frac{3\Delta}{4} \rightarrow \text{push} \frac{3\Delta}{4} - 1 \]

Node selection rule: Choose, among nodes w/ large excess, the one w/ min dist. label

\Rightarrow push from nodes of large excess to small excess
Excess scaling alg
- Preprocess
 - $\Delta = 2^{\lceil \log N \rceil}$
 - while ($\Delta \geq 1$)
 while some node has large excess
 - choose v to be the min dist. labelled node of large excess
 - $w = \text{current-edge}(v)$
 if push(v, w) is applicable
 - push$_d = \min(e(v), u_f(v, w), \Delta - e(w))$
 - push
 else advance w
 else relabel(v)
 $\Delta = \Delta / 2$
Lemma

1) Each n.s. push sends $\geq \frac{\Delta}{2}$ units
2) No excess ever exceeds Δ.

Pf

2/ Sending min $e(v), \Delta - e(w)$
 but $e(v) \geq \frac{\Delta}{2}$, $e(w) < \frac{\Delta}{2}$
 $\Delta - e(w) \geq \frac{\Delta}{2}$.
Lemma \(O(n^2) \) n.s. pushes per \(\Delta \)-scaling phase.

\[e_{\text{max}} \leq \alpha \quad \text{many} \quad e_{\text{max}} \leq \alpha/2 \]

\[\text{Pf} \quad \phi = \sum_v e(v) \cdot d(v) / \Delta \]

At beginning of a scaling phase

\[\phi \leq \Delta d(v) e(v) \]

\[\leq 2n \cdot (1) \leq 2n^2. \]

At end of a scaling phase

\[d \geq 0 \]
\[\Phi = \sum_{v} \frac{e(v)d(v)}{\Delta} = \sum_{v} d(v) \frac{e(v)}{\Delta} \]

Relabel: \(\Phi \) increases. If \(d(v) \) increases by \(\alpha \)

\(\Phi \) increases by \(\leq \alpha \). From relabelings

\(\Rightarrow \) Total increase in \(\Phi \) \(\leq 2\alpha^2 \)

Push: sat. push decreases \(\Phi \), does not increase \(\Phi \)

(1 unit from \(d(w) = 2 \))

(10^6 \) decreasing \(\Phi \)

\(d(w) = 1 \)

non-sat push: decreases \(\Phi \)

n.s. push sends \(\delta \sum \frac{D}{2} \) units

Decrease in \(\Phi \) = \(\delta (d(v) - d(w)) \geq \frac{(\Delta \alpha)}{\Delta} \)

\(\geq \frac{(\delta \alpha)}{\Delta} \)

\# n.s. pushes \(\leq 2\alpha^2 - 0 + 2\alpha^2 \)

\(\geq 8\alpha^2 \)

\(\geq 1/2 \)
\(n^2\) relabels
\(nm\) time relabeling
\(nm\) sat. pushes

\([\lg \gamma]\) scaling phases
each one does \(O(n^2)\) n.s. pushes
\(O(n^2 \lg \gamma)\) n.s. pushes

\[\text{Time} = O(nm + n^2 \lg \gamma)\]
FIFO
Excess Scaling
Highest label - in practice is best

Data Structures
Dynamic Tree - stores paths

$O(nm[\log (\frac{n^2}{m}) + 1])$
Push/Relabel works well in practice as long as
- reasonable data structures
- gap heuristic

Every 10m steps
- periodically relabel all vertices via BFS.

Increase running time by \(\approx 10^9\), potentially decrease by a lot.