Min Mean Cycle Cancelling

1. Find a feasible flow f (max flow problem)

2. While \exists a negative cycle in G_f
 - let x be the min. mean cycle
 - let $\delta = \min_{(v,w)} u_f(v,w)_{\text{net}}$
 - send δ units of flow around X
 (maintain y_i's at nodes)
- ε-optimality
- Flows are always feasible (in this alg.)

A flow is ε-opt. if $\exists \pi$ s.t.

$$C^{\pi}(v,w) \geq -\varepsilon \quad \forall (v,w) \in G_f.$$

Lemma

1) Any flow is C-optimal
2) If $\varepsilon < \frac{1}{n}$, then an ε-optimal flow is optimal.

Proof

1) Set $\pi = \emptyset$
2) Consider a cycle X in G_f.

$$\sum_{(v,w) \in X} c^{\pi}(v,w) \geq -\varepsilon > -\frac{1}{n}$$

$$|X| \leq n$$

$$\Rightarrow \sum_{(v,w) \in X} c(v,w) \geq 0 \Rightarrow f \text{ is opt.}$$

$$n = \frac{99}{100} - \text{opt.}$$

$$\frac{1}{100} - \text{opt.}$$

$$\frac{1}{100} - \frac{99}{100}$$

$$> \frac{99}{100}$$

Mar 31-4:17 PM
Given \(T \), if let \(\varepsilon^T(f) = \min_{v \in G_f} \left\{ C^T(v,w) \right\} \).

What is the best \(T \)?

Let \(\varepsilon(f) = \min_T \varepsilon^T(f) \).

Let \(\nu(f) = \min_{\text{value}} \text{mean cycle in } G_f \).
Thm \quad \exists(f) = -\mu(f).

Pf \quad 1) \quad \exists(f) \geq -\mu(f)

f \text{ is } \exists(f) \cdot \text{opt.}

\Rightarrow \text{ all cycles } X \subseteq \bigcup_{(u,v) \in X} C(u, v) = \sum_{(u,v) \in X} c(v, w) \geq -\exists(f) \cdot |X|

For min mean cycle \(X' \subseteq \bigcup_{(u,v) \in X'} C(u, v) = \mu(f) \cdot |X'|

\mu(f) \geq -\exists(f) \cdot f)

\mu(f) \leq -\exists(f) \cdot f)
2) \(\varepsilon(f) \leq -\eta(f) \)

Let \(X \) be the minimum mean cycle in \(G_f \).

Let \(C'(v, w) = C(v, w) - \eta(f) \).

With \(C' \), all cycles have non-negative cost.

Pick \(v \), let \(d(v) \) be the shortest path distance from \(v \) to \(v \).

\[d(w) \leq d(v) + C'(v, w) = d(v) + C(v, w) - \eta(f). \]

Let \(\pi(v) = d(v) \)

\[C''(v, w) = C(v, w) - \pi(v) + \pi(w) = C(v, w) + d(v) - d(w) = \eta(f). \]

\[\varepsilon(f) \leq -\eta(f). \]
Lemma. Let f be non-opt. Then $\exists \Pi$ s.t.

$$C^\Pi(v,w) = \mu(f) + -\epsilon(f) A(y,w) X$$

the min mean cycle in G_f.

(Previous proof was) $= \text{on min. mean cycle.}$

Diagram:

- Graph with vertices labeled and directed edges with weights.
Lemma Let f be a non-opt. flow, suppose we push flow around a min. mean cycle X to obtain f'. Then $\varepsilon(f') \leq \varepsilon(f)$.

PF Draw G_f w/ costs c^Π.

Any new cycles in G_f have at least one edge of $c^\Pi = \varepsilon > 0$, and other edges $c^\Pi \geq -\varepsilon$, and therefore cannot have mean value $\leq -\varepsilon$.

$\varepsilon \cdot -3$
Lemma: After \(m \) iterations of min. mean cycle
\[
\varepsilon(f') \leq (1 - \frac{1}{n}) \varepsilon(f).
\]
Fix \(\Pi \)

Pf: Case 1: All \(m \) cycles have all edges \(w \)
\[
\Pi(v_{1w}) < 0.
\]
Each iteration removes one edge from \(G_f \)
and replaces it with an edge \(w \)
\[
\Pi(v_{1w}) \geq 0
\]
Total \# of edges \(w \) \(\Pi(v_{1w}) < 0 \) decreased by \(m \)
. \(\varepsilon(f') \) have \(\Pi(v_{1w}) \geq 0 \)
. \(f' \) is optimal.
Case 2: Some minimum cycle has an edge w.

$$C^\pi(\{w\}) \geq 0$$

$$n(f') \geq -\frac{3(1X-1)+o(1)}{|1X|}$$

$$\geq -3\left(\frac{n-1}{n}\right)$$

$$\varepsilon(f') \leq \varepsilon(1-\frac{1}{n})$$