Basics of Algorithm Analysis

• We measure running time as a function of n, the size of the input (in bytes assuming a reasonable encoding).

• We work in the RAM model of computation. All “reasonable” operations take “1” unit of time. (e.g. +, *, -, /, array access, pointer following, writing a value, one byte of I/O...)

What is the running time of an algorithm

• Best case (seldom used)
• Average case (used if we understand the average)
• Worst case (used most often)

We measure as a function of n, and ignore low order terms.

• $5n^3 + n - 6$ becomes n^3
• $8n \log n - 60n$ becomes $n \log n$
• $2^n + 3n^4$ becomes 2^n
Asymptotic notation

big-O

\[O(g(n)) = \{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } \\
0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \} . \]

Alternatively, we say

\[f(n) = O(g(n)) \text{ if there exist positive constants } c \text{ and } n_0 \text{ such that } \\
0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \]

Informally, \(f(n) = O(g(n)) \) means that \(f(n) \) is asymptotically less than or equal to \(g(n) \).

big-Ω

\[\Omega(g(n)) = \{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } \\
0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \} . \]

Alternatively, we say

\[f(n) = \Omega(g(n)) \text{ if there exist positive constants } c \text{ and } n_0 \text{ such that } \\
0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \]

Informally, \(f(n) = \Omega(g(n)) \) means that \(f(n) \) is asymptotically greater than or equal to \(g(n) \).
big-Θ

\[f(n) = \Theta(g(n)) \text{ if and only if } f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n)). \]

Informally, \(f(n) = \Theta(g(n)) \) means that \(f(n) \) is asymptotically equal to \(g(n) \).

INFORMAL summary

- \(f(n) = O(g(n)) \) roughly means \(f(n) \leq g(n) \)
- \(f(n) = \Omega(g(n)) \) roughly means \(f(n) \geq g(n) \)
- \(f(n) = \Theta(g(n)) \) roughly means \(f(n) = g(n) \)
- \(f(n) = \omega(g(n)) \) roughly means \(f(n) < g(n) \)
- \(f(n) = \omega(g(n)) \) roughly means \(f(n) > g(n) \)

We use these to classify algorithms into classes, e.g. \(n, n^2, n \log n, 2^n \).

See chart for justification
Polynomial Time

The size of a problem instance typically is described by parameters such as:

- number of nodes \(n \) or \(V \)
- number of edges \(m \) or \(E \)
- largest capacity \(U \)
- largest cost (in absolute value) \(C \)

Input size: The size of the input, which consists of a list of nodes and edges and their capacities and costs is typically

\[
\Theta(n + m + m \log U + m \log C)
\]

- A **polynomial algorithm** is one whose running time is polynomial in the input, i.e. is polynomial in \(n, m, \log U, \log C \).
- A **strongly polynomial algorithm** is one whose running time is polynomial in the size of the graph and independent of the size of the numbers, i.e. is polynomial in \(n, m \).
- A **pseudo-polynomial algorithm** is one whose running time is polynomial in the size of the graph and the magnitude of the numbers, i.e. is polynomial in \(n, m, U, C \).
Strongly polynomial and polynomial algorithms are polynomial algorithms. Pseudo-polynomial algorithms are not polynomial algorithms.

Strongly polynomial algorithms are mainly a theoretical concept and do not tend to get used in practice.

We will typically shoot for polynomial algorithms.
Some Graph terminology

- node, vertex
- edge, arc
- directed undirected
- head tail
- path
- cycle
- acyclic
- bipartite graph
- tree
- forest
- cut
- s-t cut
- connectivity
- strong connectivity
- bipartite graph
Easily Solved Graph Problems

- Connectivity
- Strong Connectivity
- Spanning trees
- Bipartiteness
- Topological Search
- Depth-first Search
- Breadth-first Search
Other Basics

Basic Data Structures

- Arrays
- Linked Lists
- Stack - LIFO
- Queue - FIFO
- Binary tree
- Hash table
Dictionary Operations on ordered set

- Insert
- Delete
- Find
- Min, Max
- Successor, Predecessor
- IncreaseKey, DecreaseKey

Comments

- Some form of a balanced binary tree supports all dictionary operations in \(O(\log n) \) time
- A hash table supports Insert, Delete and Find in \(O(1) \) expected time
Graph Storage

- **An adjacency matrix** is an n by n matrix in which $A[i,j]$ stores values related to edge (i,j).

- **An adjacency list** is a length n array L of linked lists, where entry $L[i]$ is a list of all edges adjacent to vertex i.