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history of the problem up to 1985. In the last two decades faster and faster algorithms were found,the fastest being an algorithm of Gabow, Galil, and Spencer [10] (see also [11]), with a running timeof O(m log �(m;n)) on a graph of n vertices and m edges. Here �(m;n) = minfi j log(i) n � m=ng.This and earlier algorithms used as a computational model the sequential unit-cost random-access machine with the restriction that the only operations allowed on the edge weights are binarycomparisons. Fredman and Willard [9] considered a more powerful model that allows bit manipu-lation of the binary representations of the edge weights. In this model they were able to devise alinear-time algorithm. Still, the question of whether a linear-time algorithm exists for the restrictedrandom-access model remained open.A problem related to �nding minimum spanning trees is that of verifying that a given spanningtree is minimum. Tarjan [22] gave a veri�cation algorithm running in O(m �(m;n)) time, where �is a functional inverse of Ackerman's function. Later, Koml�os [19] showed that a minimum spanningtree can be veri�ed in O(m) binary comparisons of edge weights, but with nonlinear overhead todecide which comparisons to make. Dixon, Rauch and Tarjan [7] combined these algorithms with atable lookup technique to obtain an O(m)-time veri�cation algorithm. King [17] recently obtaineda simpler O(m)-time veri�cation algorithm that combines ideas of Bor�uvka, Koml�os, and Dixon,Rauch, and Tarjan.In this paper we describe a randomized algorithm for �nding a minimum spanning tree. It runsin O(m) time with high probability in the restricted random-access model. The algorithm is amodi�cation of one proposed by Karger [13, 15], who obtained a time bound of O(n logn + m).The O(m) time bound is due to Klein and Tarjan [18]. The present paper is a revision of [18] thatincludes a tightened high-probability complexity analysis. Section 2 presents the random-samplingresult that is the key to the O(m) bound. Section 3 presents our algorithm, and Section 4 containsits analysis. Section 5 includes some �nal remarks. This section ends with some preliminaries.1.1 PreliminariesOur algorithm actually solves the slightly more general problem of �nding a minimum spanningforest in a possibly disconnected graph. We assume that the input graph has no isolated vertices(vertices without incident edges).If edge weights are not distinct, we can make them distinct by numbering the edges and breakingweight-ties according to the numbers. We therefore assume for simplicity that all edge weights aredistinct. This assumption ensures that the minimum spanning tree is unique. The following2



properties are also well-known and correspond respectively to the red rule and the blue rule in [23].Cycle property: For any cycle C in a graph, the heaviest edge in C does not appear in theminimum spanning forest.Cut property: For any proper nonempty subset X of the vertices, the lightest edge with exactlyone endpoint in X belongs to the minimum spanning forest.Unlike most algorithms for �nding a minimum spanning forest, our algorithm makes use of eachproperty in a fundamental way.2 A Sampling LemmaOur algorithm relies on a random-sampling step to discard edges that cannot be in the minimumspanning tree. The e�ectiveness of this step is shown by a lemma that we present below. We need alittle terminology. Let G be a graph with weighted edges. We denote by w(x; y) the weight of edgefx; yg. If F is a forest in G, we denote by F (x; y) the path (if any) connecting x and y in F , and bywF (x; y) the maximum weight of an edge on F (x; y), with the convention that wF (x; y) = 1 if xand y are not connected in F . We say an edge fx; yg is F -heavy if w(x; y)> wF (x; y), and F -lightotherwise. Note that the edges of F are all F -light. For any forest F , no F -heavy edge can be inthe minimum spanning forest of G. This is a consequence of the cycle property. Given a forest Fin G, the F -heavy edges of G can be computed in time linear in the number of edges of G, usingan adaptation of the veri�cation algorithm of Dixon, Rauch, and Tarjan (page 1188 in [7] describesthe changes needed in the algorithm) or of that of King.Lemma 1 Let H be a subgraph obtained from G by including each edge independently with proba-bility p, and let F be the minimum spanning forest of H. The expected number of F -light edges inG is at most n=p where n is the number of vertices of G.Proof. We describe a way to construct the sample graph H and its minimum spanning tree Fsimultaneously. The computation is a variant of Kruskal's minimum spanning tree algorithm [20].Begin with H and F empty. Process the edges in increasing order by weight. To process an edgee, �rst test whether both endpoints of e are in the same connected component of F . If so, e isF -heavy, because every edge currently in F is lighter than e. Next, ip a coin that has probability3



p of coming up heads. Include the edge e in H if and only if the coin comes up heads. Finally, if eis in H and is F -light, add e to the forest F .The forest F produced by this computation is the forest that would be produced by Kruskal'salgorithm applied to the edges in H , and is therefore exactly the minimum spanning forest of H .An edge e that is F -heavy when it is processed remains F -heavy until the end of the computation,since F never loses edges. Similarly, an edge e that is F -light when processed remains F -light, sinceonly edges heavier than e are added to F after e is processed. Our goal is to show that the numberof F -light edges is probably small.When processing an edge e, we know whether e is F -heavy before ipping a coin for e. Supposefor purposes of exposition we ip a penny for e if e is F -heavy and a nickel if it is not. The penny-ips are irrelevant to our analysis; the corresponding edges are F -heavy regardless of whether ornot they are included in H . We therefore consider only the nickel-ips and the corresponding edges.For each such edge, if the nickel comes up heads, the edge is placed in F . The size of F is at mostn� 1. Thus at most n � 1 nickel-tosses have come up heads by the end of the computation.Now imagine that we continue ipping nickels until n� 1 heads have occured, and let Y be thetotal number of nickels ipped. Then Y is an upper bound on the number of F -light edges. Thedistribution of Y is exactly the negative binomial distribution with parameters n � 1 and p [8].The expectation of a random variable that has a negative binomial distribution is (n� 1)=p [8]. Itfollows that the expected number of F -light edges is at most (n� 1)=p.Remark. The above proof actually shows that the number of F -light edges is stochasticallydominated by a variable with a negative binomial distribution.Remark. Lemma 1 directly generalizes to matroids. See [15].3 The AlgorithmThe minimum spanning forest algorithm intermeshes steps of Bor�uvka's algorithm, called Bor�uvkasteps, with random-sampling steps. Each Bor�uvka step reduces the number of vertices by at leasta factor of two; each random-sampling step discards enough edges to reduce the density (ratio ofedges to vertices) to a �xed constant with high probability.The algorithm is recursive. It generates two subproblems, but with high probability the total sizeof these subproblems is at most a constant fraction less than one of the size of the original problem.This fact is the basis for the probabilistic linear bound on the running time of the algorithm.4



We begin by describing a Bor�uvka step.Bor�uvka Step. For each vertex, select the minimum-weight edge incident to the vertex. Contractall the selected edges, replacing by a single vertex each connected component de�ned by the selectededges and deleting all resulting isolated vertices, loops (edges both of whose endpoints are the same),and all but the lowest-weight edge among each set of multiple edges.A Bor�uvka step reduces the number of vertices by at least a factor of two.Now we describe the minimum spanning forest algorithm. If the graph is empty, return anempty forest. Otherwise, proceed as follows.Step 1. Apply two successive Bor�uvka steps to the graph, thereby reducing the number of verticesby at least a factor of four.Step 2. In the contracted graph, choose a subgraph H by selecting each edge independently withprobability 1/2. Apply the algorithm recursively to H , producing a minimum spanning forest F ofH . Find all the F -heavy edges (both those in H and those not in H) and delete them.Step 3. Apply the algorithm recursively to the remaining graph to compute a spanning forest F 0.Return those edges contracted in Step 1 together with the edges of F 0.We prove the correctness of the algorithm by induction. By the cut property, every edgecontracted during Step 1 is in the minimum spanning forest. Hence the remaining edges of theminimum spanning forest of the original graph form a minimum spanning forest of the contractedgraph. It remains to show that the recursive call in Step 3 �nds the minimum spanning forest ofthe contracted graph.By the cycle property, the edges deleted in Step 2 do not belong to the minimum spanning forest.By the inductive hypothesis, the minimum spanning forest of the remaining graph is correctlydetermined in the recursive call of Step 3.Remark. Our algorithm can be viewed as an instance of the generalized greedy algorithm presentedin [23], from which its correctness follows immediately.4 Analysis of the AlgorithmWe begin our analysis by making some observations about the worst-case behavior of the algorithm.Then we show that the expected running time of the algorithm is linear, by applying Lemma 1and the linearity of expectations. Finally, we show that the algorithm runs in linear time with all5



but exponentially small probability, by developing a global version of the analysis in the proof ofLemma 1 and using a Cherno� bound [1, 4, 21].Consider a single invocation of the algorithm. The total time spent in Steps 1{3, excluding thetime spent on recursive subproblems, is linear in the number of edges: Step 1 is just two steps ofBor�uvka's algorithm, which takes linear time using straightforward graph-algorithmic techniques,and Step 2 takes linear time using the modi�ed Dixon-Rauch-Tarjan veri�cation algorithm, asnoted in Section 2. The total running time is thus bounded by a constant factor times the totalnumber of edges in the original problem and in all recursive subproblems. Thus our objective is toestimate this total number of edges.Suppose the algorithm is initially applied to a graph with n vertices and m edges. Since thegraph contains no isolated vertices, m � n=2. Each invocation of the algorithm generates at mosttwo recursive subproblems. Consider the entire binary tree of recursive subproblems. The root isthe initial problem. For a particular problem, we call the �rst recursive subproblem, occuring inStep 2, the left child of the parent problem, and the second recursive subproblem, occuring in Step3, the right child. At depth d, the tree of subproblems has at most 2d nodes, each a problem on agraph of at most n=4d vertices. Thus the depth of the tree is at most log4 n, and there are at mostP1d=0 2dn=4d =P1d=0 n=2d = 2n vertices total in the original problem and all subproblems.Theorem 1 The worst-case running time of the minimum-spanning-forest algorithm isO(minfn2; m logng), the same as the bound for Bor�uvka's algorithm.Proof. We estimate the worst-case total number of edges in two di�erent ways. First, since thereare no multiple edges in any subproblem, a subproblem at depth d contains at most (n=4d)2=2edges. Summing over all subproblems gives an O(n2) bound on the total number of edges. Second,consider the left and right children of some parent problem. Suppose the parent problem is on agraph of v vertices. Every edge in the parent problem ends up in exactly one of the children (theleft if it is selected in Step 2, the right if it is not), with the exception of the edges in the minimumspanning forest F of the sample graph H , which end up in both subproblems, and the edges thatare removed in Step 1, which end up in no subproblem. If v0 is the number of vertices in the graphafter Step 1, then F contains v0 � 1 � v=4 edges. Since at least v=2 edges are removed in Step 1,the total number of edges in the left and right subproblems is at most the number of edges in theparent problem.It follows that the total number of edges in all subproblems at any single recursive depth d is at6



most m. Since the number of di�erent depths is O(logn), the total number of edges in all recursivesubproblems is O(m logn).Theorem 2 The expected running time of the minimum spanning forest algorithm is O(m).Proof. Our analysis relies on a partition of the recursion tree into left paths. Each such pathconsists of either the root or a right child and all nodes reachable from this node through a pathof left children. Consider a parent problem on a graph of X edges, and let Y be the number ofedges in its left child. Since each edge in the parent problem is either removed in Step 1 or has achance of 12 of being selected in Step 2, E[Y jX = k] � k=2. It follows by linearity of expectationthat E[Y ] � E[X ]=2. That is, the expected number of edges in a left subproblem is at most halfthe expected number of edges in its parent. It follows that, if the expected number of edges in aproblem is k, then the sum of the expected numbers of edges in every subproblem along the leftpath descending from the problem is at most P1i=0 k=2i = 2k.Thus the expected total number of edges is bounded by twice the sum of m and the expectedtotal number of edges in all right subproblems. By Lemma 1, the expected number of edges in aright subproblem is at most twice the number of vertices in the subproblem. Since the total numberof vertices in all right subproblems is at mostP1d=1 2d�1 n=4d = n=2, the expected number of edgesin the original problem and all subproblems is at most 2m+ n.Theorem 3 The minimum spanning forest algorithm runs in O(m) time with probability1� e�
(m).Proof. We obtain the high-probability result by applying a global version of the analysis in theproof of Lemma 1. We �rst bound the total number of edges in all right subproblems. These areexactly the edges that are found to be F -light in Step 2 of the parent problems. Referring back tothe proof of Lemma 1, let us consider the nickel-tosses corresponding to these edges. Each nickelthat comes up heads corresponds to an edge in a spanning forest in a right subproblem. The totalnumber of edges in all such spanning forests in all right subproblems is at most the number ofvertices in all such subproblems, which in turn is at most n=2 as shown in the proof of Theorem2. Thus n=2 is an upper bound on the total number of heads in nickel-ips. The probability thatthere are more than 3m F -light edges is at most the probability that fewer than n=2 heads occurin a sequence of 3m nickel-tosses. By a Cherno� bound [1, 4, 21], this probability is e�
(m) sincem � n=2. 7



We now consider the edges in left subproblems. The edges in a left subproblem are obtainedfrom the parent problem by sampling; i.e., a coin is tossed for each edge in the parent problem notdeleted in Step 1, and the edge is copied to the subproblem if the coin comes up heads and is notcopied if the coin comes up tails. To put it another way, an edge in the root or in a right subproblemgives rise to a sequence of copies in left subproblems, each copy resulting from a coin-ip comingup heads. The sequence ends if a coin-ip comes up tails. The number of occurrences of tails is atmost the number of sequences, which in turn is at most the number m0 of edges in the root problemand in all right subproblems. The total number of edges in all these sequences is equal to the totalnumber of heads, which in turn is at most the total number of coin-tosses. Hence the probabilitythat this number of edges exceeds 3m0 is the probability that at most m0 tails occur in a sequenceof more than 3m0 coin-tosses. Since m0 � m, this probability is e�
(m) by a Cherno� bound.Combining this with the previous high-probability bound of O(m) on m0, we �nd that the totalnumber of edges in the original problem and in all subproblems is O(m) with probability 1�e�
(m) .5 RemarksIn work with Richard Cole [5], Klein and Tarjan have adapted the randomized algorithm to runin parallel. The parallel algorithm does linear expected work and runs in O(logn 2log� n) expectedtime on a CRCW PRAM [16]. This is the �rst parallel algorithm for minimum spanning treesthat does linear work. In contrast, Karger [13] gives an algorithm running on an EREW PRAMthat requires O(logn) time and m= logn + n1+� processors for any constant � > 0. Also, Coleand Vishkin [6] give an algorithm running on a CRCW PRAM that requires O(logn) time onO((n+m) log logn= logn) processors.Among remaining open problems, we note especially the following three:1. Is there a deterministic linear-time minimum spanning tree algorithm in the restricted random-access model?2. Can randomization or some other technique be used to simplify the linear-time veri�cationalgorithm?3. Can randomization be used fruitfully to solve other network optimization problems, suchas the shortest-path problem? Randomization has already proved valuable in solving the8
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