All Pairs Shortest Paths

- **Input:** weighted, directed graph $G = (V, E)$, with weight function $w : E \to \mathbb{R}$.

- The **weight** of path $p = \langle v_0, v_1, \ldots, v_k \rangle$ is the sum of the weights of its constituent edges:
 \[
 w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i).
 \]

- The **shortest-path weight** from u to v is
 \[
 \delta(u, v) = \begin{cases}
 \min\{w(p)\} & \text{if there is a path } p \text{ from } u \text{ to } v, \\
 \infty & \text{otherwise}.
 \end{cases}
 \]

- A **shortest path** from vertex u to vertex v is then defined as any path p with weight $w(p) = \delta(u, v)$.

All Pairs Shortest Paths: Compute $d(u, v)$ the shortest path distance from u to v for all pairs of vertices u and v.
Example

Solution

\[
\begin{pmatrix}
0 & 3 & 15 & 8 \\
7 & 0 & 12 & 5 \\
1 & 4 & 0 & -1 \\
2 & -4 & 8 & 0 \\
\end{pmatrix}
\]
Approach 1

Run Single source shortest paths V times

- $O(V^2E)$ for general graphs
- $O(VE + V^2 \log V)$ for graphs with non-negative edge weights

Other approaches: Share information between the various computations
Floyd-Warshall, Dynamic Programming

• Let $d_{ij}^{(k)}$ be the weight of a shortest path from vertex i to vertex j for which all intermediate vertices are in the set $\{1, 2, \ldots, k\}$.

• When $k = 0$, a path from vertex i to vertex j with no intermediate vertex numbered higher than 0 has no intermediate vertices at all, hence $d_{ij}^{(0)} = w_{ij}$.

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min \left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right) & \text{if } k \geq 1. \end{cases} \tag{1}$$

Floyd-Warshall(W)
1 $n \leftarrow \text{rows}[W]$
2 $D^{(0)} \leftarrow W$
3 for $k \leftarrow 1$ to n
4 do for $i \leftarrow 1$ to n
5 do for $j \leftarrow 1$ to n
6 do $d_{ij}^{(k)} \leftarrow \min \left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right)$
7 return $D^{(n)}$

Running time $O(V^3)$
Example

\[
D^0 = \begin{pmatrix}
0 & 3 & 0 & 0 \\
0 & 0 & 12 & 5 \\
4 & 0 & 0 & -1 \\
2 & -4 & 0 & 0
\end{pmatrix}
\]

\[
D^1 = \begin{pmatrix}
0 & 3 & 0 & 0 \\
0 & 0 & 12 & 5 \\
4 & 7 & 0 & -1 \\
2 & -4 & 0 & 0
\end{pmatrix}
\]

\[
D^2 = \begin{pmatrix}
0 & 3 & 15 & 8 \\
0 & 0 & 12 & 5 \\
4 & 7 & 0 & -1 \\
2 & -4 & 8 & 0
\end{pmatrix}
\]

\[
D^3 = \begin{pmatrix}
0 & 3 & 15 & 8 \\
16 & 0 & 12 & 5 \\
4 & 7 & 0 & -1 \\
2 & -4 & 8 & 0
\end{pmatrix}
\]

\[
D^4 = \begin{pmatrix}
0 & 3 & 15 & 8 \\
7 & 0 & 12 & 5 \\
1 & -5 & 0 & -1 \\
2 & -4 & 8 & 0
\end{pmatrix}
\]
Another Algorithm

RESET ALL DEFINITIONS OF D.

• Let \(w_{ij} \) be the length of edge \(ij \)
• Let \(w_{ii} = 0 \)
• Let \(d^m_{ij} \) be the shortest path from \(i \) to \(j \) using \(m \) or fewer edges

\[
d^1_{ij} = w_{ij}
\]

\[
d^m_{ij} = \min \{ d^{m-1}_{ij}, \min_{1 \leq k \leq n, k \neq j} d^{m-1}_{ik} + w_{kj} \}
\]

Combining these two, we get

\[
d^m_{ij} = \min_{1 \leq k \leq n} \{ d^{m-1}_{ik} + w_{kj} \}
\]

This would give an \(O(V^4) \) algorithm
Using matrix multiplication analogy

Note the similarity of

\[d_{ij}^m = \min_{1 \leq k \leq n} \{d_{ik}^{m-1} + w_{kj}\} \]

with matrix multiplication:

\[c_{ij} = \sum_{1 \leq k \leq n} \{a_{ik} \cdot k_{kj}\} \]

Make the following substitutions (which have the right algebraic properties):

- \(\text{sum} \rightarrow \min\)
- \(a_{ij} \rightarrow d_{ik}^{m-1}\)
- \(\cdot \rightarrow +\)
- \(b_{kj} \rightarrow w_{ij}\)
- \(c \rightarrow d^m\)

Using this matrix multiplication terminology, we have

\[
\begin{align*}
D^1 &= W \\
D^2 &= D^1 \cdot W = W^2 \\
D^3 &= D^2 \cdot W = W^3 \\
&\vdots \\
D^m &= D^{m-1}W = W^m
\end{align*}
\]
But we can execute W^m be repeated squaring and get $O(V^3 \log V)$ time.