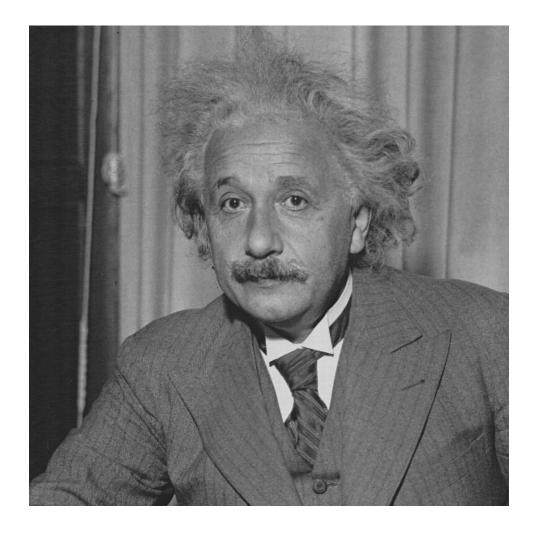
Point-to-Point Shortest Path Algorithms with Preprocessing

Andrew V. Goldberg Microsoft Research – Silicon Valley

www.research.microsoft.com/ \sim goldberg/

Joint work with Chris Harrelson, Haim Kaplan, and Retato Werneck

Einstein Quote _____



Everything should be made as simple as possible, but not simpler

____ Shortest Path Problem ____

Variants

- Non-negative and arbitrary arc lengths.
- Point to point, single source, all pairs.
- Directed and undirected.

Here we study

- Point to point, non-negative length, directed problem.
- Allow preprocessing with limited (linear) space.

Many applications, both directly and as a subroutine.

____ Shortest Path Problem ____

Input: Directed graph G = (V, A), non-negative length function $\ell : A \to \mathbb{R}^+$, source $s \in V$, terminal $t \in V$.

Preprocessing: Limited space to store results.

Query: Find a shortest path from s to t.

Interested in exact algorithms that search a subgraph.

Related work: reach-based routing [Gutman 04], hierarchical decomposition [Schultz, Wagner & Weihe 02], [Sanders & Schultes 05, 06], geometric pruning [Wagner & Willhalm 03], arc flags [Lauther 04], [Köhler, Möhring & Schilling 05], [Möhring et al. 06].

____ Motivating Application ____

Driving directions

- Run on servers and small devices.
- Current implementations
 - Use base graph based on road categories and manually augmented.
 - Runs (bidirectional) Dijkstra or A* with Euclidean bounds on "patched" graph.
 - Non-exact.
- Interested in exact and very efficient algorithms.
- Big graphs: Western Europe, USA, North America: 18 to 30 million vertices.

____ Outline ____

- Scanning method and Dijkstra's algorithm.
- Bidirectional Dijkstra's algorithm.
- A* search.
- ALT Algorithm
- Definition of reach
- Reach-based algorithm
- Combining reach and A*

____ Scanning Method ____

- For each vertex v maintain its distance label $d_s(v)$ and status $S(v) \in \{\text{unreached}, \text{labeled}, \text{scanned}\}.$
- Unreached vertices have $d_s(v) = \infty$.
- If $d_s(v)$ decreases, v becomes labeled.
- To scan a labeled vertex v, for each arc (v, w), if $d_s(w) > d_s(v) + \ell(v, w)$ set $d_s(w) = d_s(v) + \ell(v, w)$.
- Initially for all vertices are unreached.
- Start by decreasing $d_s(s)$ to 0.
- While there are labeled vertices, pick one and scan it.
- Different selection rules lead to different algorithms.

Dijkstra's Algorithm _____

[Dijkstra 1959], [Dantzig 1963].

- At each step scan a labeled vertex with the minimum label.
- Stop when t is selected for scanning.

Work almost linear in the visited subgraph size.

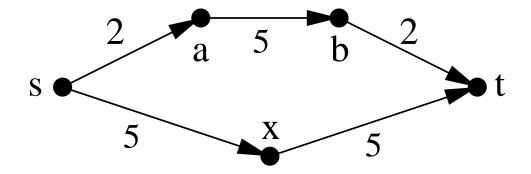
Reverse Algorithm: Run algorithm from t in the graph with all arcs reversed, stop when t is selected for scanning.

Bidirectional Algorithm

- ullet Run forward Dijkstra from s and backward from t.
- Maintain μ , the length of the shortest path seen: when scanning an arc (v, w) such that w has been scanned in the other direction, check if the corresponding s-t path improves μ .
- ullet Stop when about to scan a vertex x scanned in the other direction.
- ullet Output μ and the corresponding path.

Bidirectional Algorithm: Pitfalls _____

The algorithm is not as simple as it looks.

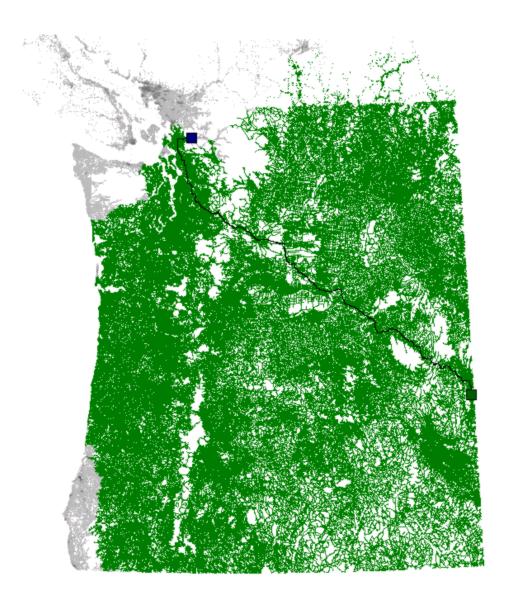


The searches meat at x, but x is not on the shortest path.

Example Graph _____

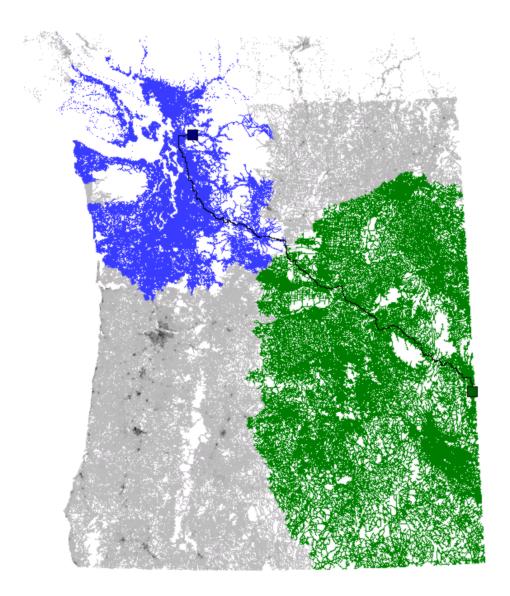
1.6M vertices, 3.8M arcs, travel time metric.

Dijkstra's Algorithm ____



Searched area

Bidirectional Algorithm ___



forward search/ reverse search

____ **A*** Search ____

[Doran 67], [Hart, Nilsson & Raphael 68]

Similar to Dijkstra's algorithm but:

- Domain-specific estimates $\pi_t(v)$ on dist(v,t) (potentials).
- At each step pick a labeled vertex with the minimum $k(v) = d_s(v) + \pi_t(v)$.

Best estimate of path length through v.

• In general, optimality is not guaranteed.

____ Feasibility and Optimality ____

Potential transformation: Replace $\ell(v, w)$ by $\ell_{\pi_t}(v, w) = \ell(v, w) - \pi_t(v) + \pi_t(w)$ (reduced costs).

Fact: Problems defined by ℓ and ℓ_{π_t} are equivalent.

Definition: π_t is *feasible* if $\forall (v, w) \in A$, the reduced costs are nonnegative. (Estimates are "locally consistent".)

Optimality: If π_t is feasible, the A* search is equivalent to Dijkstra's algorithm on transformed network, which has nonnegative arc lengths. A* search finds an optimal path.

Different order of vertex scans, different subgraph searched.

Fact: If π_t is feasible and $\pi_t(t) = 0$, then π_t gives lower bounds on distances to t.

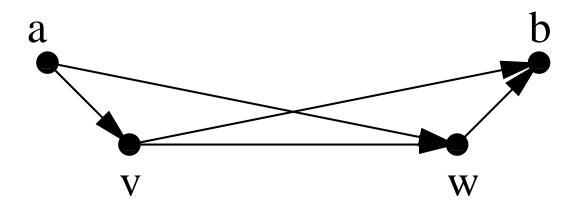
____ Computing Lower Bounds ____

Euclidean bounds:

[folklore], [Pohl 71], [Sedgewick & Vitter 86].

For graph embedded in a metric space, use Euclidean distance. Limited applicability, not very good for driving directions.

We use triangle inequality



 $dist(v, w) \ge dist(v, b) - dist(w, b)$; $dist(v, w) \ge dist(a, w) - dist(a, v)$.

____ Lower Bounds (cont.) ____

Maximum (minimum, average) of feasible potentials is feasible.

- Select landmarks (a small number).
- For all vertices, precompute distances to and from each landmark.
- For each s, t, use max of the corresponding lower bounds for $\pi_t(v)$.

Why this works well (when it does)

$$\ell_{\pi_t}(x,y) = 0$$

Bidirectional Lower-bounding _____

Forward reduced costs: $\ell_{\pi_t}(v, w) = \ell(v, w) - \pi_t(v) + \pi_t(w)$.

Reverse reduced costs: $\ell_{\pi_s}(v,w) = \ell(v,w) + \pi_s(v) - \pi_s(w)$.

What's the problem?

Bidirectional Lower-bounding _____

Forward reduced costs: $\ell_{\pi_t}(v, w) = \ell(v, w) - \pi_t(v) + \pi_t(w)$.

Reverse reduced costs: $\ell_{\pi_s}(v,w) = \ell(v,w) + \pi_s(v) - \pi_s(w)$.

Fact: π_t and π_s give the same reduced costs iff $\pi_s + \pi_t = \text{const.}$

[Ikeda et at. 94]: use $p_s(v) = \frac{\pi_s(v) - \pi_t(v)}{2}$ and $p_t(v) = -p_s(v)$.

Other solutions possible. Easy to lose correctness.

 $\operatorname{\mathsf{ALT}}$ algorithms use A^* search and landmark-based lower bounds.

____ Landmark Selection ____

Preprocessing

- Random selection is fast.
- Many heuristics find better landmarks.
- Local search can find a good subset of candidate landmarks.
- We use a heuristic with local search.

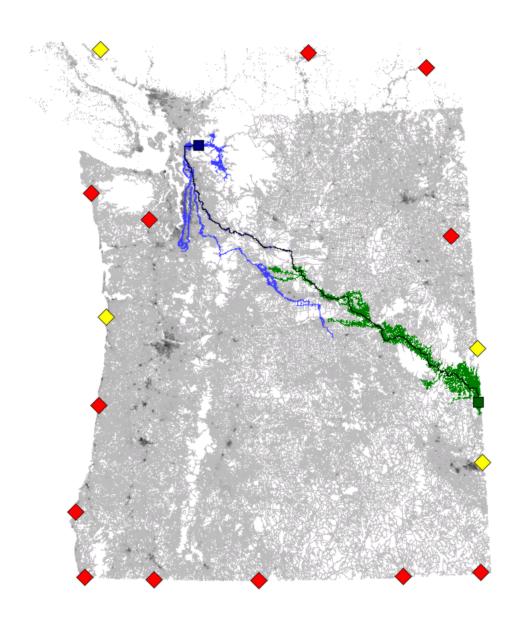
Preprocessing/query trade-off.

Query

- ullet For a specific s,t pair, only some landmarks are useful.
- Use only active landmarks that give best bounds on dist(s,t).
- If needed, dynamically add active landmarks (good for the search frontier).
- Only three active landmarks on the average.

Allows using many landmarks with small time overhead.

_ Bidirectional ALT Example _____



____ Experimental Results ____

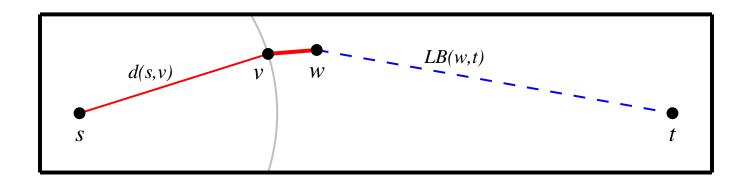
Northwest (1.6M vertices), random queries, 16 landmarks.

	preproce	essing	query			
method	minutes	MB	avgscan	maxscan	ms	
Bidirectional Dijkstra		28	518723	1 197 607	340.74	
ALT	4	132	16 276	150 389	12.05	

[Gutman 04]

- Consider a vertex v that splits a path P into P_1 and P_2 . $r_P(v) = \min(\ell(P_1), \ell(P_2))$.
- $r(v) = \max_{P}(r_{P}(v))$ over all shortest paths P through v.

Using reaches to prune Dijkstra:

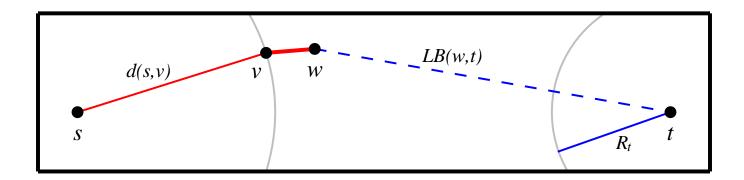


If $r(w) < \min(d(v) + \ell(v, w), LB(w, t))$ then prune w.

____ Obtaining Lower Bounds ____

Can use landmark lower bounds if available.

Bidirectional search gives implicit bounds (R_t below).



Reach-based query algorithm is Dijkstra's algorithm with pruning based on reaches. Given a lower-bound subroutine, a small change to Dijkstra's algorithm.

____ Computing Reaches _____

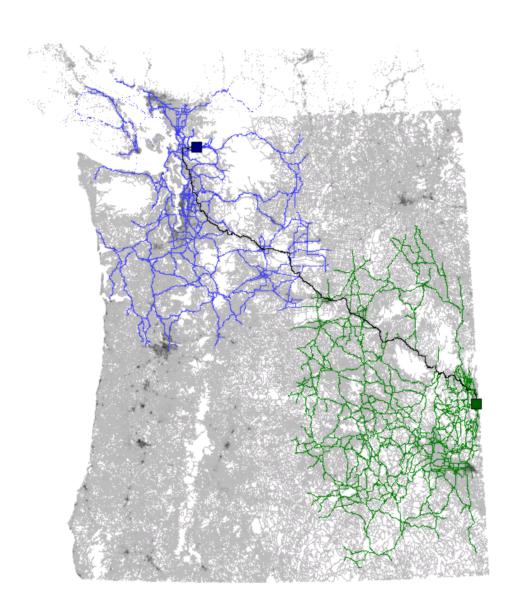
- A natural exact computation uses all-pairs shortest paths.
- Overnight for 0.3M vertex graph, years for 30M vertex graph.
- Have a heuristic improvement, but it is not fast enough.
- Can use reach upper bounds for query search pruning.

Iterative Approximation Algorithm: [Gutman 04]

- Use partial shortest path trees of depth $O(\epsilon)$ to bound reaches of vertices v with $r(v) < \epsilon$.
- Delete vertices with bounded reaches, add penalties.
- Increase ϵ and repeat.

Query time does not increase much; preprocessing faster but still not fast enough.

Reach Algorithm _____

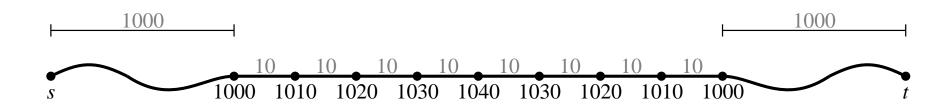


____ Experimental Results ____

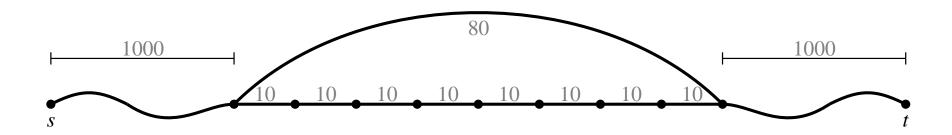
Northwest (1.6M vertices), random queries, 16 landmarks.

	preproce	ssing	query			
method	minutes	MB	avgscan	maxscan	ms	
Bidirectional Dijkstra		28	518723	1 197 607	340.74	
ALT	4	132	16 276	150 389	12.05	
Reach	1 100	34	53888	106 288	30.61	

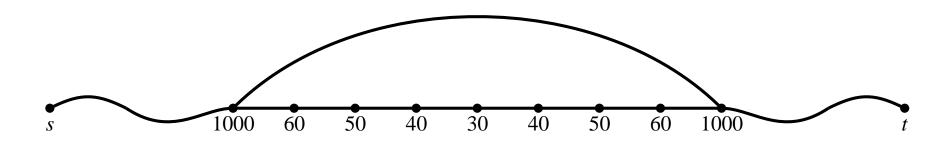
- Consider the graph below.
- Many vertices have large reach.



- Consider the graph below.
- Many vertices have large reach.
- Add a shortcut arc, break ties by the number of hops.

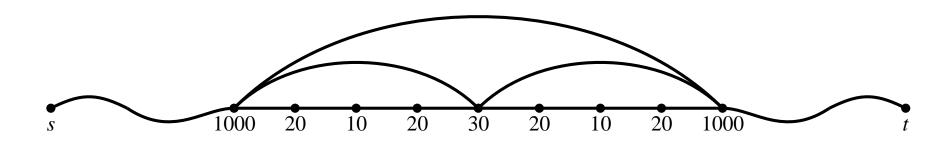


- Consider the graph below.
- Many vertices have large reach.
- Add a shortcut arc, break ties by the number of hops.
- Reaches decrease.

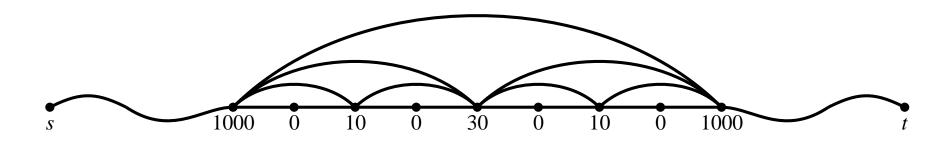


Shortcuts

- Consider the graph below.
- Many vertices have large reach.
- Add a shortcut arc, break ties by the number of hops.
- Reaches decrease.
- Repeat.



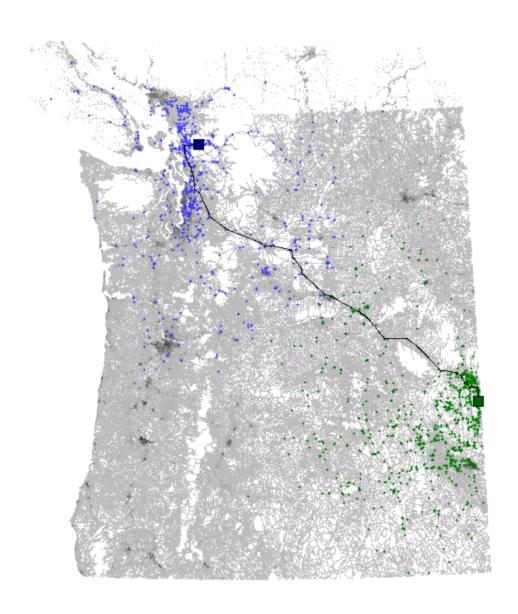
- Consider the graph below.
- Many vertices have large reach.
- Add a shortcut arc, break ties by the number of hops.
- Reaches decrease.
- Repeat.
- A small number of shortcuts can greatly decrease many reaches.



[Sanders & Schultes 05].

- ullet During preprocessing we shortcut degree 2 vertices every time ϵ is updated.
- Shortcuts greatly speed up preprocessing.
- Shortcuts speed up queries.
- Shortcuts require more space (extra arcs, auxiliary info.)

___ Reach with Shortcuts ____



____ Experimental Results ____

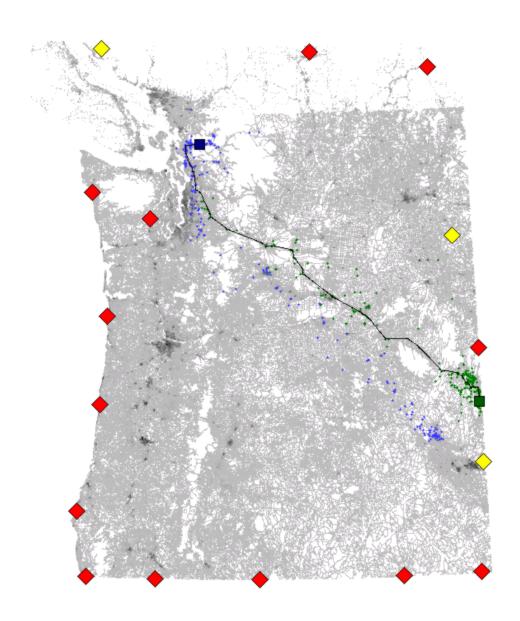
Northwest (1.6M vertices), random queries, 16 landmarks.

	preproce	essing	query			
method	minutes	MB	avgscan	maxscan	ms	
Bidirectional Dijkstra	_	28	518723	1 197 607	340.74	
ALT	4	132	16 276	150 389	12.05	
Reach	1 100	34	53888	106 288	30.61	
Reach+Short	17	100	2804	5877	2.39	

____ Reaches and ALT ____

- ALT computes transformed and original distances.
- ALT can be combined with reach pruning.
- Careful: Implicit lower bounds do not work, but landmark lower bounds do.
- Shortcuts do not affect landmark distances and bounds.

Reach with Shortcuts and ALT _____



____ Experimental Results ____

Northwest (1.6M vertices), random queries, 16 landmarks.

	preproce	ssing	query			
method	minutes	MB	avgscan	maxscan	ms	
Bidirectional Dijkstra		28	518723	1 197 607	340.74	
ALT	4	132	16 276	150 389	12.05	
Reach	1 100	34	53 888	106 288	30.61	
Reach+Short	17	100	2804	5877	2.39	
Reach+Short+ALT	21	204	367	1513	0.73	

____ The North America Graph ____

North America (30M vertices), random queries, 16 landmarks.

	preprocessing				
method	hours	GB	avgscan	maxscan	ms
Bidirectional Dijkstra		0.5	10 255 356	27 166 866	7 633.9
ALT	1.6	2.3	250 381	3 584 377	393.4
Reach	impractical				
Reach+Short	11.3	1.8	14 684	24 618	17.4
Reach+Short+ALT	12.9	3.6	1 595	7 450	3.7

___ Recent Improvements ____

- Better shortcuts [Sanders & Schultes 06]: replace small degree vertices by cliques. For constant degree bound, O(n) arcs are added.
- Improved locality (sort by reach).
- For RE, factor of 3-12 improvement for preprocessing and factor of 2-4 for query times.

_____ Recent Improvements (cont.) _____

Reach-aware landmarks:

- Store landmark distances only for high-reach vertices (e.g., 5%).
- For low-reach vertices, use the closest high-reach vertex to compute lower bounds.
- Can use freed space for more landmarks, improve both space and time.

Practical even on the North America graph (30M vertices):

- ullet pprox 1ms. query time on a server.
- ullet pprox 6sec. query time on a Pocket PC with 4GB flash card.
- Better for local queries.

____ The North America Graph ____

North America (30M vertices), random queries, 16 landmarks.

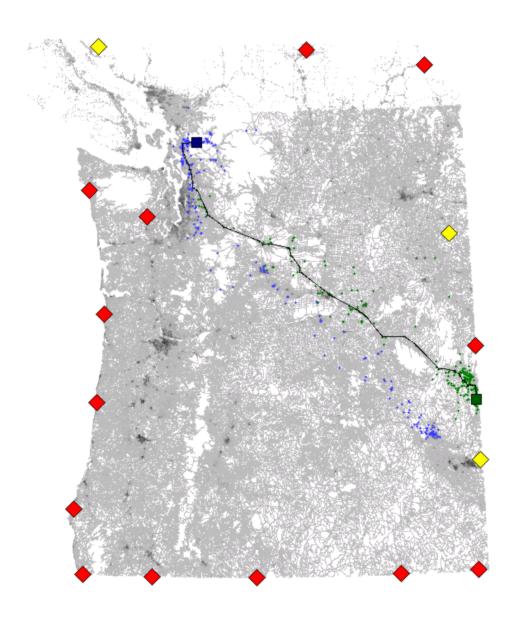
	preprocessing				
method	hours	GB	avgscan	maxscan	ms
Bidirectional Dijkstra		0.5	10 255 356	27 166 866	7 633.9
ALT	1.6	2.3	250 381	3 584 377	393.4
Reach	imprad	ctical			
Reach+Short	11.3	1.8	14 684	24618	17.4
Reach+Sh(new)	2.5	1.9	3 390	6 103	3.2
Reach+Short+ALT	12.9	3.6	1 595	7 450	3.7
Reach+Sh+ALT(new)	2.7	3.7	523	4015	1.2

____ Grid Graphs ____

Grid with uniform random lengths (0.5M vertices), 16 landmarks. No highway structure.

	prepro	cessing	query			
method	min	MB	avgscan	maxscan	ms	
Bidirectional Dijkstra		13.9	171 341	401 623	91.87	
ALT	1.9	50.2	4416	40 568	5.25	
Reach+Short	232.1	41.4	23 201	39 433	17.47	
Reach+Short (new)	28.2	43.3	4 605	7 326	4.55	
Reach+Short+ALT	234.1	77.7	1 172	7702	1.61	
Reach+Sh+ALT (new)	28.5	82.2	592	2983	1.02	

Reach preprocessing expensive, but (surprise!) helps queries.



____ Concluding Remarks ____

- Recent progress [Bast et. al 06], improvements with Sanders and Schultes.
- Preprocessing heuristics work well on road networks.
- How to select good shortcuts? (Road networks/grids.)
- For which classes of graphs do these techniques work?
- Need theoretical analysis for interesting graph classes.
- Interesting problems related to reach, e.g.
 - Is exact reach as hard as all-pairs shortest paths?
 - \circ Constant-ratio upper bounds on reaches in $\tilde{O}(m)$ time.
- Dynamic graphs.