Graphs

- Graph $G=(V, E)$ has vertices (nodes) \mathbf{V} and edges (arcs) E.
- Graph can be directed or undirected
- Graph can represent any situation with objects and pairwise relationships.

Representations

Adjacency Matrix

	1	2	3	4
1	0	1	1	1
2	1	0	0	0
3	1	0	0	1
4	1	0	1	0

Representations

Adjacency List

Comparison

	Space	Query Time	All neighbors time
Matrix	$O\left(V^{2}\right)$	$O(1)$	$O(V)$
List	$O(E)$	$O($ degree $)$	$O($ degree $)$

- For a simple graph (no double edges) $E \leq V^{2}=O\left(V^{2}\right)$
- For a connected graph $E \geq V-1$
- For a tree $E=V-1$

Breadth First Search

- Discover vertices in order of distance from the source.
- Works for undirected and directed graphs. Example is for undirected graphs.

Breadth First Search

$B F S(G, s)$
1 for each vertex $u \in V[G]-\{s\}$
2 do color $[u] \leftarrow$ WHITE $d[u] \leftarrow \infty$ $\pi[u] \leftarrow \mathrm{NIL}$
color $[s] \leftarrow$ GRAY
$d[s] \leftarrow 0$
$7 \quad \pi[s] \leftarrow$ NIL
$8 \quad Q \leftarrow \emptyset$
9 Enqueue (Q, s)
10 while $Q \neq \emptyset$

11
12
13
14
15
16
17
18
do $u \leftarrow \operatorname{DEQUEUE}(Q)$
for each $v \in \operatorname{Adj}[u]$
do if color $[v]=$ WHITE
then color $[v] \leftarrow$ GRAY
$d[v] \leftarrow d[u]+1$
$\pi[v] \leftarrow u$
EnQueue (Q, v)
color $[u] \leftarrow$ BLACK

Example

Running Time:
1 for each $u \in V$
$2 \quad$ do for each $v \in \operatorname{Adj}(v)$
3 do Something $O(1)$ time

Each edge and vertex is processed once:

$$
O(E+V)=O(E)
$$

Depth First Search

- More interesting than BFS
- Works for directed and undirected graphs. Example is for directed graphs.
- Time stamp nodes with discovery and finishing times.
- Lifetime: white, $d(v)$, grey, $f(v)$, black

Code

DFS(G)

1 for each vertex $u \in V[G]$
2 do color $[u] \leftarrow$ WHITE
$3 \quad \pi[u] \leftarrow$ NIL
4 time $\leftarrow 0$
5 for each vertex $u \in V[G]$
6 do if color $[u]=$ WHITE
7 then DFS-Visit (u)

DFS-Visit (u)
1 color $[u] \leftarrow$ GRAY
\triangleright White vertex u has just been discovered.
2 time \leftarrow time +1
$3 \quad d[u] \leftarrow$ time
4 for each $v \in \operatorname{Adj}[u] \quad \triangleright$ Explore edge (u, v).
5 do if color $[v]=$ WHITE
$6 \quad$ then $\pi[v] \leftarrow u$
$7 \quad$ DFS-Visit (v)
8 color $[u] \leftarrow$ BLACK $\quad \triangleright$ Blacken u; it is finished.
$9 \quad f[u] \leftarrow$ time \leftarrow time +1

Example

Labeled
$d(v) / f(v)$

Structure

Parenthesization

If we represent the discovery of vertex u with a left parenthesis " $(u$ " and represent its finishing by a right parenthesis " u)", then the history of discoveries and finishings makes a well-formed expression in the sense that the parentheses are properly nested.

Parenthesis theorem In any depth-first search of a (directed or undirected) graph $G=(V, E)$, for any two vertices u and v, exactly one of the following three conditions holds:

- the intervals $[d[u], f[u]]$ and $[d[v], f[v]]$ are entirely disjoint, and neither u nor v is a descendant of the other in the depth-first forest,
- the interval $[d[u], f[u]]$ is contained entirely within the interval $[d[v], f[v]$, and u is a descendant of v in a depth-first tree, or
- the interval $[d[v], f[v]]$ is contained entirely within the interval $[d[u], f[u]]$, and v is a descendant of u in a depth-first tree.

Nesting of descendants' intervals

Vertex v is a proper descendant of vertex u in the depth-first forest for a (directed or undirected) graph G if and only if $d[u]<d[v]<f[v]<f[u]$.

More Structure

White-path theorem

In a depth-first forest of a (directed or undirected) graph $G=(V, E)$, vertex v is a descendant of vertex u if and only if at the time $d[u]$ that the search discovers u, vertex v can be reached from u along a path consisting entirely of white vertices

Edge classification

1. Tree edges are edges in the depth-first forest G_{π}. Edge (u, v) is a tree edge if v was first discovered by exploring edge (u, v).
2. Back edges are those edges (u, v) connecting a vertex u to an ancestor v in a depth-first tree. Self-loops, which may occur in directed graphs, are considered to be back edges.
3. Forward edges are those nontree edges (u, v) connecting a vertex u to a descendant v in a depth-first tree.
4. Cross edges are all other edges. They can go between vertices in the same depth-first tree, as long as one vertex is not an ancestor of the other, or they can go between vertices in different depth-first trees.

