
Minimum Spanning Trees

• G = (V,E) is an undirected graph with non-negative edge weights w : E → Z+

• We assume wlog that edge weights are distinct

• A spanning tree is a tree with V − 1 edges, i.e. a tree that connects

all the vertices.

• The total cost (weight) of a spanning tree T is defined as
∑
e∈T w(e)

• A minimum spanning tree is a tree of minimum total weight.

6 4

5

14 10

3

8

2

9

15



Minimum Spanning Trees

• G = (V,E) is an undirected graph with non-negative edge weights w : E → Z+

• We assume wlog that edge weights are distinct

• A spanning tree is a tree with V − 1 edges, i.e. a tree that connects

all the vertices.

• The total cost (weight) of a spanning tree T is defined as
∑
e∈T w(e)

• A minimum spanning tree is a tree of minimum total weight.

6 4

5

14 10

3

8

2

9

15



Cuts

• A cut in a graph is a partition of the vertices into two sets S and T .

• An edge (u, v) with u ∈ S and v ∈ T is said to cross the cut .

6 4

5

14 10

3

8

2

9

15



Cuts

• A cut in a graph is a partition of the vertices into two sets S and T .

• An edge (u, v) with u ∈ S and v ∈ T is said to cross the cut .

6 4

5

14 10

3

8

2

9

15



Cuts

• A cut in a graph is a partition of the vertices into two sets S and T .

• An edge (u, v) with u ∈ S and v ∈ T is said to cross the cut .

6 4

5

14 10

3

8

2

9

15



Greedy Property

Recall that we assume all edges weights are unique.

Greedy Property: The minimum weight edge crossing a cut is in the

minimum spanning tree.

Proof Idea: Assume not, then remove an edge crossing the cut and replace

it with the minimum weight edge.

Restatement Lemma: Let G = (V,E) be an undirected graph with edge

weights w. Let A ⊆ E be a set of edges that are part of a minimum

spanning tree. Let (S, T ) be a cut with no edges from A crossing it. Then

the minimum weight edge crossing (S, T ) can be added to A.

Algorithm Idea: Repeatedly choose an edge according to the Lemma, add

to MST.

Challenge: Finding the edge to add.

Two standard algorithms:

• Kruskal – consider the edges in increasing order of weight

• Prim – start at one vertex and grow the tree.



Example: Run both agorithms

6 4

5

14 10

3

8

2

9

15



Kruskal’s Algorithm: detailed implementation

Idea: Consider edges in increasing order.

Need: a data structure to maintain the sets of vertices in each component

of the current forrest

• Make-Set(v) puts v in a set by itself

• Find-Set(v) returns the name of v’s set

• Union(u, v) combines the sets that u and v are in

MST-Kruskal(G,w)

1 A← ∅
2 for each vertex v ∈ V [G]

3 do Make-Set(v)

4 sort the edges of E into nondecreasing order by weight w

5 for each edge (u, v) ∈ E, taken in nondecreasing order by weight

6 do if Find-Set(u) 6= Find-Set(v)

7 then A← A ∪ {(u, v)}
8 Union(u, v)

9 return A



Example

6 4

5

14 10

3

8

2

9

15



Prim’s Algorithm

Idea: Grow the MST from one node going out

Need: a data structure to maintain the edges crossing the cut, and choose

minimum. We will maintain, for each vertex, the minimum weight incident

edge crossing the cut

• Insert(v) puts v in the structure

• Extract-Min() finds and returns the node with minimum key value

• Decrease-Key(v, w) updates (decreases) the key of v

MST-Prim(G,w, r)

1 for each u ∈ V [G]

2 do key [u]←∞
3 π[u]← nil

4 key [r]← 0

5 Q← V [G]

6 while Q 6= ∅
7 do u← Extract-Min(Q)

8 for each v ∈ Adj [u]

9 do if v ∈ Q and w(u, v) < key [v]

10 then π[v]← u

11 key [v]← w(u, v)



Example

6 4

5

14 10

3

8

2

9

15


