Matchings

Definition: Give an undirected graph G, a matching M is a subset of the edges $E \subseteq M$ such that each vertex $v \in V$ is incident to at most one edge from M.

Variants of Matching

- Graph can be bipartite or general
- Graph can be weighted or unweighted

Terms

- A matching M such that, for all edges $e \notin M, M \cup\{e\}$ is not a matching, is called maximal.
- A maximum cardinality matching is called maximum.
- A matching of size $|V| / 2$ is called perfect.
- The weight of a matching M is $w(M)=\Sigma_{e \in M} w(e)$.
- A maximum weight matching is the matching of maximum weight.
- All variants polynomial time, bipartite matching seems "easier".

Matchings in Bipartite Graphs

- Can solve via max flow. Ford Fulkerson is $O(m|f|)=O(n m)$.
- Will develop from first principles to understand terminology and to see improvements.

Definitions

- An alternating path with respect to a matching M is a path in which edges alternate between those in M and those not in M.
- A matched vertex is one incident to an edge in M
- An free vertex is a vertex that is not matched
- An augmenting path is an alternating path that starts and ends with a free vertex.
- A shortest augmenting path is an augmenting path of shortest length.
- Symmetric Difference of 2 sets: $A \oplus B=(A \cup B)-(A \cap B)$

Augmenting Paths

Facts

- Let M be a matching and P be an augmenting path relative to M. Then $M \oplus P$ is a matching and $|M \oplus P|=|M|+1$.
- Let M be a matching and $P_{1}, P_{2}, \ldots P_{k}$ be k vertex-disjoing augmenting path relative to M. Then $M \oplus\left(P_{1} \cup P_{2} \cup \ldots \cup P_{k}\right)$ is a matching and $\left|M \oplus\left(P_{1} \cup P_{2} \cup \ldots \cup P_{k}\right)\right|=|M|+k$.

Hopkroft-Karp Algorithm

- $M=\emptyset$
- Repeat Until $P=\emptyset$
- Let $P=\left(P_{1} \cup P_{2} \cup \ldots \cup P_{k}\right)$ be a maximal set of vertex disjoint shortest augmenting paths with respect to M.
$-M=M \oplus\left(P_{1} \cup P_{2} \cup \ldots \cup P_{k}\right)$

Facts

- You can find a maximal set of vertex-disjoint augmenting paths in $O(m)$ time via breadth-first search.
- Given 2 matchings M and M^{\prime}, let $G^{\prime}=\left(v, M \oplus M^{\prime}\right)$, then
- For all vertices, the degree of v in G^{\prime} is at most 2.
$-G^{\prime}$ is a set of alternating paths and alternating cycles.
- If $|M|<\left|M^{\prime}\right|$, then G^{\prime} has at least $\left|M^{\prime}\right|-|M| \quad$ vertex disjoint augmenting paths with respect to M

Main Lemma

Lemma Let ℓ be the length of a shortest augmenting path with respect to M. Let P_{1}, \ldots, P_{k} be a maximal set of vertex disjiont shortest augmenting paths. Let $M^{\prime}=M \oplus\left(P_{1} \cup \ldots P_{k}\right)$. Let P be a shortest augmenting path with respect to M^{\prime}. Then $|P|>\ell$.

Lemma

Lemma If the shortest augmeting path with respect to M has ℓ edges, and M^{\prime} is a maximum matching, then

$$
\left|M^{\prime}\right| \leq|M|+n / \ell
$$

Theorem Hopkroft-Karp is an $O(\sqrt{n} m)$ time algorithm for bipartite matching.

Assignment Problem

Minimum weighted perfect bipartite matching in a complete graph.

$$
\begin{aligned}
\min \sum_{(v, w) \in E} c(v, w) x(v, w) & \\
\text { s.t. } & \\
\sum_{v \in V} x(v, w)=1 & \forall w \in V \\
\sum_{w \in V} x(v, w)=1 & \forall v \in V \\
x(v, w) \geq 0 & \forall(v, w) \in E
\end{aligned}
$$

Dual:

$$
\begin{gathered}
\max \sum_{v \in V} \pi(v) \\
\text { s.t. } \\
\pi(v)+\pi(w) \leq c(v, w) \quad \forall(v, w) \in E
\end{gathered}
$$

Dual is a shortest path problem.

Stable Matching

- Given a set of men X and women W.
- Each man ranks the women, and each woman ranks the men.
- Let $r(m, w)$ be the rank assigned from man m to woman w. Define $r(w, m)$ similarly.
- Given a matching M, a pair (m, w) is unstable if m and w each prefer each other to their current matched partner.
- A stable matching is a matching with no unstable pairs.

Results on Stable Matching

Theorem For any set of preferences, a stable marriage exists and can be found in $O\left(n^{2}\right)$ time.

Algorithm

- Proceed in Rounds
- In each round, any unmatched man proposes to his highest ranked woman who has not yet rejected him.
- Woman accept any proposal if it is preferred to their current matching (and prefer anyone to being unmatched).

Properties of Algorithm

- Once a woman is matched, she stays matched.
- The partner of a woman only improves over time
- Once a woman rejects a man, she would always reject him in the future.
- A woman always accepts her first proposal.

Conclusion: Every woman is eventually matched.

Claims:

- The matching is stable.
- Each man is matched to the highest ranked woman he could match in any stable marriage.
- Each woman is matched to the lowest ranked man she could match in any stable marriage.

