Matchings

Definition: Give an undirected graph G, a matching M is a subset of the edges $E\subseteq M$ such that each vertex $v\in V$ is incident to at most one edge from M.

Variants of Matching

- Graph can be bipartite or general
- Graph can be weighted or unweighted

Terms

- ullet A matching M such that, for all edges $e \not\in M$, $M \cup \{e\}$ is not a matching, is called maximal.
- A maximum cardinality matching is called maximum.
- A matching of size |V|/2 is called perfect.
- ullet The weight of a matching M is $w(M) = \sum_{e \in M} w(e)$.
- A maximum weight matching is the matching of maximum weight.
- All variants polynomial time, bipartite matching seems "easier".

Matchings in Bipartite Graphs

- Can solve via max flow. Ford Fulkerson is O(m|f|) = O(nm).
- Will develop from first principles to understand terminology and to see improvements.

Definitions

- An alternating path with respect to a matching M is a path in which edges alternate between those in M and those not in M.
- A matched vertex is one incident to an edge in M
- An free vertex is a vertex that is not matched
- An augmenting path is an alternating path that starts and ends with a free vertex.
- A shortest augmenting path is an augmenting path of shortest length.
- Symmetric Difference of 2 sets: $A \oplus B = (A \cup B) (A \cap B)$

Augmenting Paths

Facts

- Let M be a matching and P be an augmenting path relative to M. Then $M \oplus P$ is a matching and $|M \oplus P| = |M| + 1$.
- Let M be a matching and $P_1, P_2, \ldots P_k$ be k vertex-disjoing augmenting path relative to M. Then $M \oplus (P_1 \cup P_2 \cup \ldots \cup P_k)$ is a matching and $|M \oplus (P_1 \cup P_2 \cup \ldots \cup P_k)| = |M| + k$.

Hopkroft-Karp Algorithm

- $\bullet M = \emptyset$
- Repeat Until $P = \emptyset$
 - Let $P = (P_1 \cup P_2 \cup \ldots \cup P_k)$ be a maximal set of vertex disjoint shortest augmenting paths with respect to M.
 - $-M = M \oplus (P_1 \cup P_2 \cup \ldots \cup P_k)$

Facts

- You can find a maximal set of vertex-disjoint augmenting paths in O(m) time via breadth-first search.
- \bullet Given 2 matchings $\ M$ and $\ M'$, let $\ G' = (v, M \oplus M')$, then
 - For all vertices, the degree of v in G' is at most 2.
 - -G' is a set of alternating paths and alternating cycles.
 - $-\operatorname{If}~|M|<|M'|$, then G' has at least |M'|-|M| vertex disjoint augmenting paths with respect to M

Main Lemma

Lemma Let ℓ be the length of a shortest augmenting path with respect to M. Let P_1,\ldots,P_k be a maximal set of vertex disjoint shortest augmenting paths. Let $M'=M\oplus (P_1\cup\ldots P_k)$. Let P be a shortest augmenting path with respect to M'. Then $|P|>\ell$.

Lemma

Lemma If the shortest augmeting path with respect to M has ℓ edges, and M' is a maximum matching, then

$$|M'| \le |M| + n/\ell$$

•

Theorem Hopkroft-Karp is an $O(\sqrt{n}m)$ time algorithm for bipartite matching.

Assignment Problem

Minimum weighted perfect bipartite matching in a complete graph.

$$\begin{aligned} & \min \sum_{(v,w) \in E} c(v,w) x(v,w) \\ & \qquad \qquad \mathbf{s.t.} \\ & \sum_{v \in V} x(v,w) = 1 & \forall w \in V \\ & \sum_{w \in V} x(v,w) = 1 & \forall v \in V \\ & \qquad \qquad x(v,w) \geq 0 & \forall (v,w) \in E \end{aligned}$$

Dual:

$$\max \sum_{v \in V} \pi(v)$$

$$\mathbf{s.t.}$$

$$\pi(v) + \pi(w) \le c(v, w) \ \forall (v, w) \in E$$

Dual is a shortest path problem.

Stable Matching

- Given a set of men X and women W.
- Each man ranks the women, and each woman ranks the men.
- \bullet Let r(m,w) be the rank assigned from man m to woman w . Define r(w,m) similarly.
- Given a matching M, a pair (m, w) is unstable if m and w each prefer each other to their current matched partner.
- A stable matching is a matching with no unstable pairs.

Results on Stable Matching

Theorem For any set of preferences, a stable marriage exists and can be found in $O(n^2)$ time.

Algorithm

- Proceed in Rounds
- In each round, any unmatched man proposes to his highest ranked woman who has not yet rejected him.
- Woman accept any proposal if it is preferred to their current matching (and prefer anyone to being unmatched).

Properties of Algorithm

- Once a woman is matched, she stays matched.
- The partner of a woman only improves over time
- Once a woman rejects a man, she would always reject him in the future.
- A woman always accepts her first proposal.

Conclusion: Every woman is eventually matched.

Claims:

- The matching is stable.
- Each man is matched to the highest ranked woman he could match in any stable marriage.
- Each woman is matched to the lowest ranked man she could match in any stable marriage.