Minimum Cost Flow by Successive Shortest Paths

- Initialize to the 0 flow
- Repeat
 - Send flow along a shortest path in G_f

Comments:
- Correctly computes a minimum-cost flow
- Not polynomial time.
- Simple bound of $O(nmCU)$ time.
Pseudoflow

Pseudoflow: A pseudoflow is a function on the edges of a graph satisfying

\[0 \leq f(v, w) \leq u(v, w) \ \forall (v, w) \in E \]

- Given a pseudoflow \(f \), we define the “excess” at \(v \) as

\[e(v) = b(v) + \sum_{w \in V} f(w, v) - \sum_{w \in V} f(v, w). \]

- If \(e(v) = 0 \ \forall v \in V \), then a pseudoflow is a flow.
- We define reduced cost optimality of a pseudoflow \(f \) as

\[\exists \pi \text{ s.t. } c^\pi(v, w) \geq 0 \ \forall (v, w) \in G_f \]

Strategy: Maintain an \(f \) and \(\pi \) such that \(f \) is a pseudoflow satisfying reduced cost optimality. Work to make \(f \) a flow. When \(f \) is a flow, you know it is optimal.
How do you initialize?

- You can assume that $c(v, w) \geq 0 \forall (v, w) \in E$. Then the 0-flow satisfies reduced cost optimality.
- But what if the assumption doesn’t hold?
How do you initialize?

- You can assume that \(c(v, w) \geq 0 \forall (v, w) \in E \). Then the 0-flow satisfies reduced cost optimality.

- But what if the assumption doesn’t hold?

- Set \(f(v, w) = u(v, w) \) for all edges with \(c(v, w) < 0 \).

- Now, all edges in \(G_f \), satisfy \(c^\pi(v, w) \geq 0 \).

- Update \(e(v) \) accordingly.
Successive Shortest Paths for Minimum Cost Flow

Successive Shortest Path

1. $f = 0; \Pi = 0$
2. $e(v) = b(v) \forall v \in V$
3. Initialize $E = \{v: e(v) > 0\}$ and $D = \{v: e(v) < 0\}$
4. while $E \neq 0$
5. Pick a node $k \in E$ and $\ell \in D$
6. Compute $d(v)$, shortest path distances from k in G_f w.r.t. edge distances c^π.
7. Let P be a shortest path from k to ℓ.
8. Set $\pi = \pi - d$
9. Let $\delta = \min\{e(k), -e(\ell), \min\{u_f(v, w) : (v, w) \in P\}\}$
10. Send δ units of flow on the path P
11. Update f, G_f, E, D and c^π.
Correctness of successive shortest path algorithm

Lemma: Let f be a pseudoflow satisfying reduced cost optimality with respect to π. Let $d(v)$ be the shortest path distance from some node s to v in G_f with respect to c^π. Then

- f satisfies reduced cost optimality with respect to $\pi' = \pi - d$.
- $c^{\pi'}(v, w) = 0$ if (v, w) is on a shortest path from s to some other node.
Correctness of successive shortest path algorithm

Corollary: After each iteration of the successive shortest paths algorithm, f satisfies reduced cost optimality.

But still not necessarily polynomial.
Use Capacity Scaling on top of shortest path algorithm

Def:

\[G_f(\Delta) = \{(v, w) \in G_f : u_f(v, w) \geq \Delta\} \]
Capacity Scaling Algorithm for Minimum Cost Flow

Successive Shortest Path

1. $f = 0; \ \pi = 0$
2. $e(v) = b(v) \ \forall v \in V$
3. $\Delta = 2^{\lceil U \rceil}$
4. while $\Delta \geq 1$
 - (Δ scaling phase)
5. for every edge $(v, w) \in G_f$
6. if $u_f(v, w) \geq \Delta$ and $c^\pi(v, w) < 0$
7. Send $u_f(v, w)$ units of flow on (v, w); update f, e
8. $S(\Delta) = \{ v \in V : e(v) \geq \Delta \}$
9. $T(\Delta) = \{ v \in V : e(v) \leq -\Delta \}$
10. while $S(\Delta) \neq 0$ and $T(\Delta) \neq 0$
11. Pick a node $k \in S(\Delta)$ and $\ell \in T(\Delta)$
12. Compute $d(v)$, shortest path distances from k in $G_f(\Delta)$
13. w.r.t. edge distances c^π.
14. Let P be a shortest path from k to ℓ.
15. Set $\pi = \pi - d$
16. Let $\delta = \min\{e(k), -e(\ell), \min\{u_f(v, w) : (v, w) \in P\}\}$
17. Send δ units of flow on the path P
18. Update f, $G_f(\Delta)$, $S(\Delta)$, $T(\Delta)$ and c^π.
19. $\Delta = \Delta / 2$
Analysis of Running Time