Minimum Cost Flow

Notations:

- Directed graph G = (V, E)
- Let *u* denote capacities
- \bullet Let c denote edge costs.
- A flow of f(v, w) units on edge (v, w) contributes cost c(v, w)f(v, w) to the objective function.

Different (equivalent) formulations

- Find the maximum flow of minimum cost.
- \bullet Send x units of flow from s to t as cheaply as possible.
- General version with supplies and demands
 - No source or sink.
 - Each node has a value b(v).
 - positive b(v) is a supply
 - negative b(v) is a demand.
 - Find flow which satisfies supplies and demands and has minimum total cost.

General version of min-cost flow

- Directed graph G = (V, E)
- non-negative edge capacities <u>u</u>
- \bullet edge costs c
- Supply/demand b on each vertex

$$\begin{aligned} & \min \sum_{(v,w) \in E} c(v,w) f(v,w) \\ & \textbf{subject to} \\ & f(v,w) \leq u(v,w) \ \, \forall (v,w) \in E \\ & \sum_{w \in V} f(v,w) - \sum_{w \in V} f(w,v) & = b(v) \ \, \forall v \in V \\ & f(v,w) & \geq 0 \quad \, \forall (v,w) \in E \end{aligned}$$

Assumptions

- ullet if $(v,w)\in E$, then $(w,v)\not\in E$
- $\bullet \ \Sigma_v \, b(v) = 0$
- Graph is directed
- costs/capacities are integral
- There exists a directed path of infinite capacity between each pair of nodes.

Residual Graph

- ullet Capacity is as for flow (now use $u_f(v,w)$ for residual capacity
- ullet If $(v,w)\in E$ and $(w,v)\in E_f$ then c(w,v)=-c(v,w) .

Optimality of a flow 1: Negative Cycles

Characterization 1: A feasible flow f is optimal iff G_f has no negative cycles.

Note 1: A feasible flow is one satisfying all supplies/demands. The 0-flow is not feasible (unless all b(v) = 0.

Note 2: Flow decomposition for min-cost flow. The difference between any two feasible flows is a collection of cycles.

Node Potentials

- ullet Similar to shortest paths, we use node potentials $\pi(v)$.
- ullet Reduced cost of edge (v,w),

$$c^{\pi}(v, w) = c(v, w) - \pi(v) + \pi(w)$$

• For any cycle X, we have

$$\sum_{(v,w)\in X} c^{\pi}(v,w) = \sum_{(v,w)\in X} c(v,w)$$

Optimality 2: Reduced Cost Optimality

Reduced Cost Optimality: A feasible flow f is optimal iff there exsits potentials π such that

$$c^{\pi}(v, w) \ge 0 \quad \forall (v, w) \in G_f$$

Optimality 3: Complimentary Slackness

A feasible flow f is optimal iff there exsits potentials π such that for all edges $(v,w)\in G$

- if $c^{\pi}(v, w) > 0$ then f(v, w) = 0
- if 0 < f(v, w) < u(v, w) then $c^{\pi}(v, w) = 0$
- if $c^{\pi}(v, w) < 0$ then f(v, w) = u(v, w).

More on f and π

Two Questions;

- Given an optimal f, how do we compute π ?
- Given an optimal π , how do we compute f?

First Answer

• Given an optimal f, how do we compute π ?

Solution:

- Use Reduced Cost Optimality,
- ullet Compute shortest path distances $\ d$ in $\ G_f$,
- Let $\pi = -d$

Seond Answer

• Given an optimal π , how do we compute f?

Solution

- Use Complimentary Slackness
- Fix f on the edges with $c^{\pi}(v, w) < 0$ or $c^{\pi}(v, w) > 0$
- ullet Solve the resulting max flow problem on edges with $c^{\pi}(v,w)=0$

Algorithms for Minimum Cost Flow

There are many algorithms for min cost flow, including:

- Cycle cancelling algorithms (negative cycle optimality)
- Successive Shortest Path algorithms (reduced cost optimality)
- Out-of-Kilter algorithms (complimentary slackness)
- Network Simplex
- Push/Relabel Algorithms
- Dual Cancel and Tighten
- Primal-Dual

• . . .

Cycle Cancelling Algorithm

Basic Algorithm (Klein's Algorithm)

- Find a feasible flow f (solve a maximum flow)
- While there exists a negative cost cycle X in G_f
 - Let $\delta = \min_{(v,w) \in X} u_f(v,w)$
 - Send δ units of flow around X

Analysis:

- Let $U = \max_{(v,w) \in E} u(v,w)$
- Let $C = \max_{(v,w) \in E} c(v,w)$
- For any feasible flow $-mCU \le c(f) \le mCU$
- Each iteration of the Basic Cycle Cancelling Algorithm decreases objective by at least 1.
- Conclusion: At most 2mCU iterations.
- Running time = $O(nm^2CU)$. Not polynomial.

Ideas for Improvement

- Send flow around most negative cycle. (NP-hard to find)
- How many iterations would that be?

Ideas for Improvement

- Send flow around most negative cycle. (NP-hard to find)
- How many iterations would that be?

Analysis:

- The difference between any two feasible flows is the union of at most m cycles.
- Let f be the current flow, f^* be the optimal flow.
- Consider $f f^*$. It is the union of at most m cycles.
- The most negative cycle in $f f^*$ must have cost at least

$$\frac{1}{m}c(f^* - f)$$

•

Analysis continued

- Each iteration gets $\frac{1}{m}$ of the way to the optimal flow.
- Equivalently, each iteration decreases the distance to the optimal flow by a $1-\frac{1}{m}$ factor.
- Initial distance is at most 2mCU.
- Once we get within one of the optimal flow, we are done, since flows, and costs of flows are integers.

Conclusion: The number of iterations is

$$\lg_{1-1/m}(mCU)$$

•

Analysis:

$$\lg_{1-1/m}(mCU) = \frac{\lg(mCU)}{\lg(1 - \frac{1}{m})}$$

$$\approx \frac{\lg(mCU)}{\frac{1}{m}}$$

$$= m \lg(mCU)$$

There are $O(m \lg(mCU))$ iterations.

Cycle Cancelling

- If we could find most negative cycle, there would be a polynomial number of iterations.
- Finding the most negative cycle is NP-hard.
- Solution: Find minimum mean cycle and cancel it.
- We will show that the minimum mean cycle "aproximates" the most negative cycle well.

Mnimum Mean Cycle Algorithm

- Find a feasible flow f (solve a maximum flow)
- While there exists a negative cost cycle X in G_f
 - Let X be the minimum mean cycle
 - Let $\delta = \min_{(v,w) \in X} u_f(v,w)$
 - -Send δ units of flow around X (Maintain potentials π at nodes).

Note: Flows are always feasible in this algorithm

Def: A flow f is ϵ -optimal if there exists potentials π such that

$$c^{\pi}(v, w) \ge -\epsilon \ \forall (v, w) \in G_f$$

ϵ -optimality

Lemma:

- \bullet Any feasible flow is C -optimal.
- \bullet If $\ \epsilon < 1/n$, then an $\epsilon\text{-optimal}$ flow is optimal.

Main Theorem

Defining ϵ given f and π : Given π and f, let $\epsilon^{\pi}(f) = -\min_{(v,w) \in G_f} \{c^{\pi}(v,w)\}$. This value is the smallest ϵ for which the flow f is ϵ -optimal.

Choosing π , given f

- ullet Note that f is not optimal, so we cannot just run shortest paths to find an optimal π
- Let $\epsilon(f) = \min_{\pi} \epsilon^{\pi}(f)$.
- ullet Let $\mu(f)$ be the minimum mean cycle value in G_f .

Theorem Given any feasible flow f

$$\epsilon(f) = -\mu(f)$$

More analysis

Lemma: Let f be a feasible non-optimal flow. Let X be the minimum mean cycle in G_f . Then there exist π s.t.

$$c^\pi(v,w) = \mu(f) = -\epsilon(f) \ \forall (v,w) \in X$$

Progress

Lemma: Let f be a feasible non-optimal flow. Let X be the minimum mean cycle in G_f . Suppose we push flow around X to obtain f'. Then $\epsilon(f') \leq \epsilon(f) = \epsilon$

Measured Progress

Lemma: Let f be a feasible non-optimal flow. Suppose that we execute m iterations of the minimum-mean cycle algorithm to obtain f. Then, if the algorithm has not terminated, we have that

$$\epsilon(f') \le \left(1 - \frac{1}{n}\right)\epsilon(f)$$

•

Summary

- In m iterations, ϵ decreases by a 1-1/n factor.
- In nm iterations, ϵ decreases by a $(1-1/n)^n \approx 1/e$ factor.
- Initially $\epsilon \leq C$
- We stop when $\epsilon \leq 1/n$
- Decrease by a factor of $e \ln(nC)$ times.
- Therefore, number of iterations is $O(nm \log(nC))$
- Running time is $O(n^2m^2\log(nC))$

Nice feature of algorithm: No explicit scaling. Eplicit scaling enforces a lower bound.

Strongly Polynomial Algorithm

- Recall that strongly polynomial means polynomials in n and m and "independent" of C and U.
- We have seen strongly polynomial algorithms for maximum flow.
- No strongly polynomial algorithm is known for linear programming.
- No strongly polynomial algorithm is known for multicommodity flow.
- We will see a strongly polynomial algorithm for minimum cost flow, one of the "hardest" problems for which such an algorithm exists.
- Strongly polynomial is mainly a theoretical issue.

Theorem: The minimum mean cycle algorithm runs in $O(n^2m^3\log n)$ time.

Analysis

Ideas for strongly polynomail algorithm

- If, at some point $|c^{\pi}(v,w)| >> \epsilon(f)$, then (v,w) if fixed, the flow will never change.
 - If $c^{\pi}(v, w)$ large positive, you never want to put most flow on it.
 - If $c^{\pi}(v, w)$ large negative, you never want to remove flow from it.

More precisely

- An edge if ϵ -fixed if the flow on that edge is the same for all ϵ' -optimal flows, for all $\epsilon' \leq \epsilon$.
- Once an edge is ϵ -fixed, we can freeze the flow on that edge, and ignore the edge for the remainder of the algorithm.
- We therefore have a notion of progress that depends on the number of edges of the graph.

Analysis

Theorem If $|c^\pi(v,w)| \geq 2n\epsilon(f)|$, then (v,w) is ϵ -fixed.

Analysis Continued

Theorem: Every $nm(\ln n + 1)$ iterations, at least one edge becomes ϵ -fixed.

Corollary: Total of $O(nm^2 \lg n)$ iterations and $O(n^2m^3 \lg n)$ running time.