Minimum Cost Flow

Notations:

- Directed graph $G=(V, E)$
- Let u denote capacities
- Let c denote edge costs.
- A flow of $f(v, w)$ units on edge (v, w) contributes cost $c(v, w) f(v, w)$ to the objective function.

Different (equivalent) formulations

- Find the maximum flow of minimum cost.
- Send x units of flow from s to t as cheaply as possible.
- General version with supplies and demands
- No source or sink.
- Each node has a value $b(v)$.
- positive $b(v)$ is a supply
- negative $b(v)$ is a demand.
- Find flow which satisfies supplies and demands and has minimum total cost.

General version of min-cost flow

- Directed graph $G=(V, E)$
- non-negative edge capacities
- edge costs c
- Supply/demand b on each vertex

$$
\begin{aligned}
& \min \sum_{(v, w) \in E} c(v, w) f(v, w) \\
& \text { subject to } \\
& \\
& f(v, w) \leq u(v, w) \\
& \quad \forall(v, w) \in E \\
& \sum_{w \in V} f(v, w)-\sum_{w \in V} f(w, v) \quad=b(v) \quad \forall v \in V \\
& f(v, w) \quad \geq 0 \quad
\end{aligned} \begin{aligned}
& \forall(v, w) \in E
\end{aligned}
$$

Assumptions

- if $(v, w) \in E$, then $(w, v) \notin E$
- $\Sigma_{v} b(v)=0$
- Graph is directed
- costs/capacities are integral
- There exists a directed path of infinite capacity between each pair of nodes.

Residual Graph

- Capacity is as for flow (now use $u_{f}(v, w)$ for residual capacity
- If $(v, w) \in E$ and $(w, v) \in E_{f}$ then $c(w, v)=-c(v, w)$.

Optimality of a flow 1: Negative Cycles

Characterization 1: A feasible flow f is optimal iff G_{f} has no negative cycles.

Note 1: A feasible flow is one satisfying all supplies/demands. The 0-flow is not feasible (unless all $b(v)=0$.

Note 2: Flow decomposition for min-cost flow. The difference between any two feasible flows is a collection of cycles.

Node Potentials

- Similar to shortest paths, we use node potentials $\pi(v)$.
- Reduced cost of edge (v, w),

$$
c^{\pi}(v, w)=c(v, w)-\pi(v)+\pi(w)
$$

- For any cycle X, we have

$$
\sum_{(v, w) \in X} c^{\pi}(v, w)=\sum_{(v, w) \in X} c(v, w)
$$

Optimality 2: Reduced Cost Optimality

Reduced Cost Optimality: A feasible flow f is optimal iff there exsits potentials π such that

$$
c^{\pi}(v, w) \geq 0 \quad \forall(v, w) \in G_{f}
$$

Optimality 3: Complimentary Slackness

A feasible flow f is optimal iff there exsits potentials π such that for all edges $(v, w) \in G$

- if $c^{\pi}(v, w)>0$ then $f(v, w)=0$
- if $0<f(v, w)<u(v, w)$ then $c^{\pi}(v, w)=0$
- if $c^{\pi}(v, w)<0$ then $f(v, w)=u(v, w)$.

More on f and π

Two Questions;

- Given an optimal f, how do we compute π ?
- Given an optimal π, how do we compute f ?

First Answer

- Given an optimal f, how do we compute π ?

Solution:

- Use Reduced Cost Optimality,
- Compute shortest path distances d in G_{f},
- Let $\pi=-d$

Seond Answer

- Given an optimal π, how do we compute f ?

Solution

- Use Complimentary Slackness
- Fix f on the edges with $c^{\pi}(v, w)<0$ or $c^{\pi}(v, w)>0$
- Solve the resulting max flow problem on edges with $c^{\pi}(v, w)=0$

Algorithms for Minimum Cost Flow

There are many algorithms for min cost flow, including:

- Cycle cancelling algorithms (negative cycle optimality)
- Successive Shortest Path algorithms (reduced cost optimality)
- Out-of-Kilter algorithms (complimentary slackness)
- Network Simplex
- Push/Relabel Algorithms
- Dual Cancel and Tighten
- Primal-Dual
- ...

Cycle Cancelling Algorithm

Basic Algorithm (Klein's Algorithm)

- Find a feasible flow f (solve a maximum flow)
- While there exists a negative cost cycle X in G_{f}
- Let $\delta=\min _{(v, w) \in X} u_{f}(v, w)$
- Send δ units of flow around X

Analysis:

- Let $U=\max _{(v, w) \in E} u(v, w)$
- Let $C=\max _{(v, w) \in E} c(v, w)$
- For any feasible flow $-m C U \leq c(f) \leq m C U$
- Each iteration of the Basic Cycle Cancelling Algorithm decreases objective by at least 1 .
- Conclusion: At most $2 m C U$ iterations.
- Running time $=O\left(n m^{2} C U\right)$. Not polynomial.

Ideas for Improvement

- Send flow around most negative cycle. (NP-hard to find)
- How many iterations would that be?

Ideas for Improvement

- Send flow around most negative cycle. (NP-hard to find)
- How many iterations would that be?

Analysis:

- The difference between any two feasible flows is the union of at most m cycles.
- Let f be the current flow, f^{*} be the optimal flow.
- Consider $f-f^{*}$. It is the union of at most m cycles.
- The most negative cycle in $f-f^{*}$ must have cost at least

$$
\frac{1}{m} c\left(f^{*}-f\right)
$$

Analysis continued

- Each iteration gets $\frac{1}{m}$ of the way to the optimal flow.
- Equivalently, each iteration decreases the distance to the optimal flow by a $1-\frac{1}{m}$ factor.
- Initial distance is at most $2 m C U$.
- Once we get within one of the optimal flow, we are done, since flows, and costs of flows are integers.

Conclusion: The number of iterations is

$$
\lg _{1-1 / m}(m C U)
$$

Analysis:

$$
\begin{aligned}
\lg _{1-1 / m}(m C U) & =\frac{\lg (m C U)}{\lg \left(1-\frac{1}{m}\right)} \\
& \approx \frac{\lg (m C U)}{\frac{1}{m}} \\
& =m \lg (m C U)
\end{aligned}
$$

There are $O(m \lg (m C U))$ iterations.

Cycle Cancelling

- If we could find most negative cycle, there would be a polynomial number of iterations.
- Finding the most negative cycle is NP-hard.
- Solution: Find minimum mean cycle and cancel it.
- We will show that the minimum mean cycle "aproximates" the most negative cycle well.

Mnimum Mean Cycle Algorithm

- Find a feasible flow f (solve a maximum flow)
- While there exists a negative cost cycle X in G_{f}
- Let X be the minimum mean cycle
- Let $\delta=\min _{(v, w) \in X} u_{f}(v, w)$
- Send δ units of flow around X (Maintain potentials π at nodes).

Note: Flows are always feasible in this algorithm

Def: A flow f is ϵ-optimal if there exists potentials π such that

$$
c^{\pi}(v, w) \geq-\epsilon \quad \forall(v, w) \in G_{f}
$$

ϵ-optimality

Lemma:

- Any feasible flow is C-optimal.
- If $\epsilon<1 / n$, then an ϵ-optimal flow is optimal.

Main Theorem

Defining ϵ given f and π : Given π and f, let $\epsilon^{\pi}(f)=-\min _{(v, w) \in G_{f}}\left\{c^{\pi}(v, w)\right\}$. This value is the smallest ϵ for which the flow f is ϵ-optimal.

Choosing π, given f

- Note that f is not optimal, so we cannot just run shortest paths to find an optimal π
- Let $\epsilon(f)=\min _{\pi} \epsilon^{\pi}(f)$.
- Let $\mu(f)$ be the minimum mean cycle value in G_{f}.

Theorem Given any feasible flow f

$$
\epsilon(f)=-\mu(f)
$$

More analysis

Lemma: Let f be a feasible non-optimal flow. Let X be the minimum mean cycle in G_{f}. Then there exist π s.t.

$$
c^{\pi}(v, w)=\mu(f)=-\epsilon(f) \quad \forall(v, w) \in X
$$

Progress

Lemma: Let f be a feasible non-optimal flow. Let X be the minimum mean cycle in G_{f}. Suppose we push flow around X to obtain f^{\prime}. Then $\epsilon\left(f^{\prime}\right) \leq \epsilon(f)=\epsilon$

Measured Progress

Lemma: Let f be a feasible non-optimal flow. Suppose that we execute m iterations of the minimum-mean cycle algorithm to obtain f. Then, if the algorithm has not terminated, we have that

$$
\epsilon\left(f^{\prime}\right) \leq\left(1-\frac{1}{n}\right) \epsilon(f)
$$

Summary

- In m iterations, ϵ decreases by a $1-1 / n$ factor.
- In $n m$ iterations, ϵ decreases by a $(1-1 / n)^{n} \approx 1 / e$ factor.
- Initially $\epsilon \leq C$
- We stop when $\epsilon \leq 1 / n$
- Decrease by a factor of $e \ln (n C)$ times.
- Therefore, number of iterations is $O(n m \log (n C)$
- Running time is $O\left(n^{2} m^{2} \log (n C)\right)$

Nice feature of algorithm: No explicit scaling. Eplicit scaling enforces a lower bound.

Strongly Polynomial Algorithm

- Recall that strongly polynomial means polynomials in n and m and "independent" of C and U.
- We have seen strongly polynomial algorithms for maximum flow.
- No strongly polynomial algorithm is known for linear programming.
- No strongly polynomial algorithm is known for multicommodity flow.
- We will see a strongly polynomial algorithm for minimum cost flow, one of the "hardest" problems for which such an algorithm exists.
- Strongly polynomial is mainly a theoretical issue.

Theorem: The minimum mean cycle algorithm runs in $O\left(n^{2} m^{3} \log n\right)$ time.

Analysis

Ideas for strongly polynomail algorithm

- If, at some point $\left|c^{\pi}(v, w)\right| \gg \epsilon(f)$, then (v, w) if fixed, the flow will never change.
- If $c^{\pi}(v, w)$ large positive, you never want to put most flow on it.
- If $c^{\pi}(v, w)$ large negative, you never want to remove flow from it.

More precisely

- An edge if ϵ-fixed if the flow on that edge is the same for all ϵ^{\prime}-optimal flows, for all $\epsilon^{\prime} \leq \epsilon$.
- Once an edge is ϵ-fixed, we can freeze the flow on that edge, and ignore the edge for the remainder of the algorithm.
- We therefore have a notion of progress that depends on the number of edges of the graph.

Analysis

Theorem If $\left|c^{\pi}(v, w)\right| \geq 2 n \epsilon(f) \mid$, then (v, w) is ϵ-fixed.

Analysis Continued

Theorem: Every $n m(\ln n+1)$ iterations, at least one edge becomes ϵ -fixed.

Corollary: Total of $O\left(n m^{2} \lg n\right)$ iterations and $O\left(n^{2} m^{3} \lg n\right)$ running time.

