Carpool Fairness

	Days				
Person	1	2	3	4	5
1	X	X	X		
2	X		X		
3	X	X	X	X	X
4		X	X	X	X

What is a fair division of driving?

Carpool Fairness

	Days				
Person	1	2	3	4	5
1	X	X	X		
2	X		X		
3	X	X	X	X	X
4		X	X	X	X

What is a fair division of driving?

	Days					
Person	1	2	3	4	5	Total responsibility r_{i}
1	$1 / 3$	$1 / 3$	$1 / 4$			$11 / 12$
2	$1 / 3$		$1 / 4$			$7 / 12$
3	$1 / 3$	$1 / 3$	$1 / 4$	$1 / 2$	$1 / 2$	$23 / 12$
4		$1 / 3$	$1 / 4$	$1 / 2$	$1 / 2$	$19 / 12$

Proposal: Person i should drive no more than $\left\lceil r_{i}\right\rceil$ times.

Formaulation as a flow problem

	Days					
Person	1	2	3	4	5	Total responsibility r_{i}
1	$1 / 3$	$1 / 3$	$1 / 4$			$11 / 12$
2	$1 / 3$		$1 / 4$			$7 / 12$
3	$1 / 3$	$1 / 3$	$1 / 4$	$1 / 2$	$1 / 2$	$23 / 12$
4		$1 / 3$	$1 / 4$	$1 / 2$	$1 / 2$	$19 / 12$

- Bipartite graph, nodes for each person and day.
- Think of r_{i} as supply for each person
- Think of 1 as demand for each day
- Edges between person and day if they can drive on that day..

Does a flow of value 5 exist?

Fractional/Integral flow

- A fractional flow of value 5 exists in graph with source-incident capacities $\left\lceil r_{i}\right\rceil$ and flow of r_{i}
- Theorem If capacities are integral a fractional flow of value x exists, then an integral flow for value $\lceil x\rceil$ exists.
- Use the integral flow to solve the carpool problem.

Baseball Elimination

(SportsWriters end of Season Problem)
Team

Wins w_{i}	Games left g_{i}	Games against $g_{i j}$				
			NY	Bos	Tor	Bal
NY Yankees	93	8	-	1	6	1
Boston Red Sox	89	4	1	-	0	3
Toronto Blue Jays	88	7	6	0	-	1
Baltimore Orioles	86	5	1	3	1	-

Question: Which teams are eliminated and which are not?

Formalism

- w_{i} - wins for team i
- g_{i} - games left for team i
- $g_{i j}$ - games left between i and j

For any subset R of teams T :

- wins in R, $w(R)=\sum_{i \in R} w_{i}$
- games left in $\mathbf{R}, g(R)=\sum_{i, j \in R, i<j} g_{i j}$

A lower bound on a number of teams that some team must win

$$
a(R)=\frac{w(R)+g(R)}{|R|}
$$

Claim: For $i \in T, R \subseteq T-\{i\}$, and $a(R)>w_{i}+g_{i}$, then i is eliminated. Justification: Some team must win the average.

A stronger condition?

Let $x_{i j}$ be the number of times that i beats j.
Team k is not eliminated if there exist $x_{i j}$ s.t. it is possible for team k to come in first. That is,

$$
\begin{gather*}
x_{i j}+x_{j} \quad=g_{i j} \quad \forall i, j \in T \tag{1}\\
w_{k}+g_{k} \geq w_{i}+\Sigma_{j \in T-\{k\}} x_{i j} \quad \forall i \in T \tag{2}\\
x_{i j} \geq 0 \quad x_{i j} \in\{0,1\} \tag{3}
\end{gather*}
$$

Can also use flow problem.

Proof that flow problem solves the problem

Claims:

- If a flow f of value $\sum_{i<j} g_{i j}$ exists, then team k is not eliminated.
- If no flow of value $\sum_{i<j} g_{i j}$ exists then them k is eliminated.

