
Minimum Spanning Trees

• G = (V,E) is an undirected graph with non-negative edge weights w : E → Z+

• We assume wlog that edge weights are distinct

• A spanning tree is a tree with V − 1 edges, i.e. a tree that connects

all the vertices.

• The total cost (weight) of a spanning tree T is defined as
∑
e∈T w(e)

• A minimum spanning tree is a tree of minimum total weight.

6 4

5

14 10

3

8

2

9

15



Minimum Spanning Trees

• G = (V,E) is an undirected graph with non-negative edge weights w : E → Z+

• We assume wlog that edge weights are distinct

• A spanning tree is a tree with V − 1 edges, i.e. a tree that connects

all the vertices.

• The total cost (weight) of a spanning tree T is defined as
∑
e∈T w(e)

• A minimum spanning tree is a tree of minimum total weight.

6 4

5

14 10

3

8

2

9

15



Cuts

• A cut in a graph is a partition of the vertices into two sets S and T .

• An edge (u, v) with u ∈ S and v ∈ T is said to cross the cut .

6 4

5

14 10

3

8

2

9

15



Cuts

• A cut in a graph is a partition of the vertices into two sets S and T .

• An edge (u, v) with u ∈ S and v ∈ T is said to cross the cut .

6 4

5

14 10

3

8

2

9

15



Cuts

• A cut in a graph is a partition of the vertices into two sets S and T .

• An edge (u, v) with u ∈ S and v ∈ T is said to cross the cut .

6 4

5

14 10

3

8

2

9

15



Greedy Property

Recall that we assume all edges weights are unique.

Greedy Property: The minimum weight edge crossing a cut is in the

minimum spanning tree.

Proof Idea: Assume not, then remove an edge crossing the cut and replace

it with the minimum weight edge.

Restatement Lemma: Let G = (V,E) be an undirected graph with edge

weights w. Let A ⊆ E be a set of edges that are part of a minimum

spanning tree. Let (S, T ) be a cut with no edges from A crossing it. Then

the minimum weight edge crossing (S, T ) can be added to A.

Algorithm Idea: Repeatedly choose an edge according to the Lemma, add

to MST.

Challenge: Finding the edge to add.

Two standard algorithms:

• Kruskal – consider the edges in increasing order of weight

• Prim – start at one vertex and grow the tree.



Example: Run both agorithms

6 4

5

14 10

3

8

2

9

15



Kruskal’s Algorithm: detailed implementation

Idea: Consider edges in increasing order.

Need: a data structure to maintain the sets of vertices in each component

of the current forrest

• Make-Set(v) puts v in a set by itself

• Find-Set(v) returns the name of v’s set

• Union(u, v) combines the sets that u and v are in

MST-Kruskal(G,w)

1 A← ∅
2 for each vertex v ∈ V [G]

3 do Make-Set(v)

4 sort the edges of E into nondecreasing order by weight w

5 for each edge (u, v) ∈ E, taken in nondecreasing order by weight

6 do if Find-Set(u) 6= Find-Set(v)

7 then A← A ∪ {(u, v)}
8 Union(u, v)

9 return A



Example

6 4

5

14 10

3

8

2

9

15



Prim’s Algorithm

Idea: Grow the MST from one node going out

Need: a data structure to maintain the edges crossing the cut, and choose

minimum. We will maintain, for each vertex, the minimum weight incident

edge crossing the cut

• Insert(v) puts v in the structure

• Extract-Min() finds and returns the node with minimum key value

• Decrease-Key(v, w) updates (decreases) the key of v

MST-Prim(G,w, r)

1 for each u ∈ V [G]

2 do key [u]←∞
3 π[u]← nil

4 key [r]← 0

5 Q← V [G]

6 while Q 6= ∅
7 do u← Extract-Min(Q)

8 for each v ∈ Adj [u]

9 do if v ∈ Q and w(u, v) < key [v]

10 then π[v]← u

11 key [v]← w(u, v)



Example

6 4

5

14 10

3

8

2

9

15



Baruvka’s Algorithm

• Repeat

– Every node picks its minimum incoming edge and adds to the span-

ning tree T

– Contract all edges in T

• How much progress is made?

• How implement an iteration?

• Total running time?



Baruvka’s Algorithm

• Repeat

– Every node picks its minimum incoming edge and adds to the span-

ning tree T

– Contract all edges in T

• How much progress is made?

• How implement an iteration?

• Total running time?

T (n,m) = T (n/2,m− n) +O(n +m)

Problem: Edges don’t decrease fast enough



Eliminating Edges

• The heaviest edge on any cycle is not in the MST.

• Let F be a forest

• Let wF (u, v) be the maximum weight of an edge on the path from u

to v in F (or ∞ if the path does not exist.

• Edge (u, v) is F-heavy if w(u, v) > wF (u, v) and F-light otherwise.

Claim: Let F be any forest, let (u, v) be any edge. If (u, v) is F-heavy,

then (u, v) is not in the MST.



Ideas

• It is good to eliminate F-heavy edges

• The MST T would let us eliminate all non-MST edges.

• What can an F that is not an MST eliminate

Fact to accept without proof: Given G and a forrest F , we can eliminate

all F -heavy edges in O(n +m) time (spanning tree verification).



Algorithm MST (G)

1. Run 3 Bruvka phases to get G′ . Let C be the contracted edges.

2. Let G′′ be G′ with each edge included with prob. 1/2 .

3. Recursively compute F ′′ = MST (G′′) .

4. Identify the F”-heavy edges in G′ . Delete them to obtain G′′′ .

5. Recursively compute F ′′′ = MST (G′′′)

6. Return F ′′′ ∪ C

Note: The recursion bottons out on a graph with O(1) nodes.

Key Lemma: Let H be a subgraph of G where each edge is included

with probability p . Let F be a Minimum Spanning Forest of H . Then

the expected number of F-light edges in G is at most n/p .

Recurrence T (n,m) ≤ O(n +m) + T (n/8,m/2) + T (n/8, n/4) = O(n +m)


