Minimum Spanning Trees

- $G=(V, E)$ is an undirected graph with non-negative edge weights $w: E \rightarrow Z^{+}$
- We assume wlog that edge weights are distinct
- A spanning tree is a tree with $V-1$ edges, i.e. a tree that connects all the vertices.
- The total cost (weight) of a spanning tree \mathbf{T} is defined as $\sum_{e \in T} w(e)$
- A minimum spanning tree is a tree of minimum total weight.

Minimum Spanning Trees

- $G=(V, E)$ is an undirected graph with non-negative edge weights $w: E \rightarrow Z^{+}$
- We assume wlog that edge weights are distinct
- A spanning tree is a tree with $V-1$ edges, i.e. a tree that connects all the vertices.
- The total cost (weight) of a spanning tree \mathbf{T} is defined as $\sum_{e \in T} w(e)$
- A minimum spanning tree is a tree of minimum total weight.

Cuts

- A cut in a graph is a partition of the vertices into two sets S and T.
- An edge (u, v) with $u \in S$ and $v \in T$ is said to cross the cut.

Cuts

- A cut in a graph is a partition of the vertices into two sets S and T.
- An edge (u, v) with $u \in S$ and $v \in T$ is said to cross the cut .

Cuts

- A cut in a graph is a partition of the vertices into two sets S and T.
- An edge (u, v) with $u \in S$ and $v \in T$ is said to cross the cut.

Greedy Property

Recall that we assume all edges weights are unique.
Greedy Property: The minimum weight edge crossing a cut is in the minimum spanning tree.

Proof Idea: Assume not, then remove an edge crossing the cut and replace it with the minimum weight edge.

Restatement Lemma: Let $G=(V, E)$ be an undirected graph with edge weights w. Let $A \subseteq E$ be a set of edges that are part of a minimum spanning tree. Let (S, T) be a cut with no edges from A crossing it. Then the minimum weight edge crossing (S, T) can be added to A.

Algorithm Idea: Repeatedly choose an edge according to the Lemma, add to MST.

Challenge: Finding the edge to add.
Two standard algorithms:

- Kruskal - consider the edges in increasing order of weight
- Prim - start at one vertex and grow the tree.

Example: Run both agorithms

Kruskal's Algorithm: detailed implementation

Idea: Consider edges in increasing order.

Need: a data structure to maintain the sets of vertices in each component of the current forrest

- Make-Set (v) puts v in a set by itself
- Find-Set (v) returns the name of v 's set
- Union (u, v) combines the sets that u and v are in
$\operatorname{MST}-\operatorname{Kruskal}(G, w)$
$1 \quad A \leftarrow \emptyset$
2 for each vertex $v \in V[G]$
3 do Make-Set (v)
4 sort the edges of E into nondecreasing order by weight w
5 for each edge $(u, v) \in E$, taken in nondecreasing order by weight
6 do if $\operatorname{Find}-\operatorname{Set}(u) \neq \operatorname{Find-Set}(v)$
7
8

$$
\text { then } A \leftarrow A \cup\{(u, v)\}
$$

$\operatorname{Union}(u, v)$
return A

Example

Prim's Algorithm

Idea: Grow the MST from one node going out
Need: a data structure to maintain the edges crossing the cut, and choose minimum. We will maintain, for each vertex, the minimum weight incident edge crossing the cut

- Insert (v) puts v in the structure
- Extract-Min() finds and returns the node with minimum key value
- Decrease- $\operatorname{Key}(v, w)$ updates (decreases) the key of v
$\operatorname{MST}-\operatorname{Prim}(G, w, r)$

```
for each }u\inV[G
    do key[u]}\leftarrow
        \pi[u]\leftarrow\textrm{NIL}
    key[r]}\leftarrow
    Q\leftarrowV[G]
while Q\not=\emptyset
    do }u\leftarrow\mathrm{ Extract-Min}(Q
        for each v\inAdj[u]
        do if }v\inQ\mathrm{ and }w(u,v)<key[v
            then }\pi[v]\leftarrow
                        key[v]}\leftarroww(u,v
```

Example

Baruvka's Algorithm

- Repeat
- Every node picks its minimum incoming edge and adds to the spanning tree T
- Contract all edges in T
- How much progress is made?
- How implement an iteration?
- Total running time?

Baruvka's Algorithm

- Repeat
- Every node picks its minimum incoming edge and adds to the spanning tree T
- Contract all edges in T
- How much progress is made?
- How implement an iteration?
- Total running time?

$$
T(n, m)=T(n / 2, m-n)+O(n+m)
$$

Problem: Edges don't decrease fast enough

Eliminating Edges

- The heaviest edge on any cycle is not in the MST.
- Let F be a forest
- Let $w_{F}(u, v)$ be the maximum weight of an edge on the path from u to v in F (or ∞ if the path does not exist.
- Edge (u, v) is F-heavy if $w(u, v)>w_{F}(u, v)$ and F-light otherwise.

Claim: Let F be any forest, let (u, v) be any edge. If (u, v) is F-heavy, then (u, v) is not in the MST.

Ideas

- It is good to eliminate F-heavy edges
- The MST T would let us eliminate all non-MST edges.
- What can an F that is not an MST eliminate

Fact to accept without proof: Given G and a forrest F, we can eliminate all F-heavy edges in $O(n+m)$ time (spanning tree verification).

Algorithm $\operatorname{MST}(G)$

1. Run 3 Bruvka phases to get G^{\prime}. Let C be the contracted edges.
2. Let $G^{\prime \prime}$ be G^{\prime} with each edge included with prob. $1 / 2$.
3. Recursively compute $F^{\prime \prime}=\operatorname{MST}\left(G^{\prime \prime}\right)$.
4. Identify the \mathbf{F} "-heavy edges in G^{\prime}. Delete them to obtain $G^{\prime \prime \prime}$.
5. Recursively compute $F^{\prime \prime \prime}=\operatorname{MST}\left(G^{\prime \prime \prime}\right)$
6. Return $F^{\prime \prime \prime} \cup C$

Note: The recursion bottons out on a graph with $O(1)$ nodes.

Key Lemma: Let H be a subgraph of G where each edge is included with probability p. Let F be a Minimum Spanning Forest of H. Then the expected number of \mathbf{F}-light edges in G is at most n / p.

Recurrence $\quad T(n, m) \leq O(n+m)+T(n / 8, m / 2)+T(n / 8, n / 4)=O(n+m)$

