Unimodularity

Definition A basis matrix is a square submatrix with linearly independent columns.

Definition A matrix A is unimodular if every basis matrx \mathbf{B} of A has $\operatorname{det}(B)$ equal to 1 or -1 .

Theorem Let A be an integer matrix with linearly independent rows. Then the following 3 conditions are equivalent:

1. A is unimodular
2. For any integer vector b, every basic feasible solution to $A x=b, x \geq 0$ is integral.
3. Every basis matrix B has an integer inverse B^{-1}.

Definition A matrix is totally unimodular if each square submatrix has determinant equal to $-1,0$ or 1 .

Totally unimodualar is a subclass of unimodular.

Totally unimodular

Theorem The node-arc incidence matrix of a directed network is totally unimodular.

Non-bipartite matching

$$
\begin{gather*}
\max \sum_{(i, j) \in E} x_{i j} \tag{1}\\
\text { s.t. } \tag{2}\\
\sum_{(i, j) \in E} x_{i j} \leq 1 \quad \forall i \in V \tag{3}\\
x_{i j} \in\{0,1\} \tag{4}
\end{gather*}
$$

This program is not totally unimodular.
We can give a graph for which the optimal fraction matching and the optimal integral matching have different values.

Ideas for non-bipartite matching algorithm

- Emulate the bipartite algorithm, and fix it when it breaks.
- unique label property: In the search algorithm for augmenting paths, label nodes as even or odd, given their distance from the first free vertex. If the label of a node is independent of the choices of the search algorithm, then the unique label property holds.
- (redefinition) An augmenting path is an alternating path starting at a free vertex, ending at a free vertex, and the end is labelled odd.

Lemma For two matchings M and M^{\prime}, let $A=M \oplus M^{\prime}$. Then the connected components of A are of six types:

- empty
- alternating cycle
- alternating path (with four choices for endpoints)

Augmenting Path Lemma: If p is unmatched in a matching M, and there is no augmenting path starting at p, then there is a maximum matching in which p is unmatched.

Augmenting Path

- Augmenting path lemma implies that if a matching is not optimal, an augmenting path exists
- Finding it may be difficult.

Ideas

- A stem is an even length alternating path starting at a root p and ending at a vertex w ($p=w$ is possible).
- A blossom is an odd length alternating cycle starting and ending at w.
- Claim: Every node in a blossom is reachable by both an odd length and an even length alternating path.
- Idea: Label the whole blossom as "even."
- Implementation of idea: Contract the blossom.
- contract $\left(v_{1}, v_{2}\right)$ - replace v_{1} and v_{2} by a new vertex smathv' where v^{\prime} has an edge to any neighbor of v_{1} or v_{2}

Correctness of Algorithm

- Let G^{C} be G with a contracted blossom.
- If there is an augmenting path in G^{C} then there is an augmenting path in G
- If there is an augmenting path in G then there is an augmenting path in G^{C}

Running time

- At most n augmenting paths
- Each search takes $O(m)$ time to either find a path, or contract a blossom, for a total of $O(n m)$ time per path.
- Total time of $O\left(n^{2} m\right)$.
- Running time of $O(\sqrt{n} m)$ is possible.

