Minimum Cost Flow by Successive Shortest Paths

- Initialize to the 0 flow
- Repeat
- Send flow along a shortest path in G_{f}

Comments:

- Correctly computes a minimum-cost flow
- Not polynomial time.
- Simple bound of $O((n m)(m U))$ time.

Pseudoflow

Pseudoflow: A pseudoflow is a function on the edges of a graph satisfying

$$
0 \leq f(v, w) \leq u(v, w) \quad \forall(v, w) \in E
$$

- Given a pseduflow f, we define the "excess" at v as

$$
e(v)=b(v)+\sum_{w \in V} f(w, v)-\sum_{w \in V} f(v, w) .
$$

- If $e(v)=0 \forall v \in V$, then a pseudoflow is a flow.
- We define reduced cost optimality of a pseudoflow f as

$$
\exists \pi \text { s.t. } c^{\pi}(v, w) \geq 0 \quad \forall(v, w) \in G_{f}
$$

Strategy: Maintain an f and π such that f is a pseudoflow satisfying reduced cost optimality. Work to make f a flow. When f is a flow, you know it is optimal.

How do you initialize?

- You can assume that $c(v, w) \geq 0 \quad \forall(v, w) \in E$. Then the 0 -flow satisfies reduced cost optimality.
- But what if the assumption doesn't hold?

How do you initialize?

- You can assume that $c(v, w) \geq 0 \quad \forall(v, w) \in E$. Then the 0 -flow satisfies reduced cost optimality.
- But what if the assumption doesn't hold?
- Set $f(v, w)=u(v, w)$ for all edges with $c(v, w)<0$.
- Now, all edges in G_{f}, satisfy $c^{\pi}(v, w) \geq 0$.
- Update $e(v)$ accordingly.

Successive Shortest Paths for Minimum Cost Flow

Successive Shortest Path

```
f=0; \Pi=0
e(v)=b(v)\forallv\inV
Initialize E ={v:e(v)>0} and D={v:e(v)<0}
while }E\not=
5 Pick a node k\inE and \ell\inD, s.t. \ell is reachable from k in G}\mp@subsup{G}{f}{}
6 Compute d(v), shortest path distances from k in G}\mp@subsup{G}{f}{
w.r.t. edge distances }\mp@subsup{c}{}{\pi}\mathrm{ .
Let P be a shortest path from k to \ell.
8 Set }\pi=\pi-
Let }\delta=\operatorname{min}{e(k),-e(\ell),\operatorname{min}{\mp@subsup{u}{f}{}(v,w):(v,w)\inP}
    Send \delta units of flow on the path P
    Update f, Gf, E,D and c}\mp@subsup{c}{}{\pi}\mathrm{ .
```

9
10
11

Correctness of successive shortest path algorithm

Lemma: Let f be a pseudoflow satisfying reduced cost optimality with respect to π. Let $d(v)$ be the shortest path distance from some node s to v in G_{f} with respect to c^{π}. Then

- f satisfies reduced cost optimality with respect to $\pi^{\prime}=\pi-d$.
- $c^{\pi^{\prime}}(v, w)=0$ if (v, w) is on a shortest path from s to some other node.

Lemma: Let f^{\prime} be the pseduoflow at the end of the while loop. Then f^{\prime} satisfies reduced cost optimality with respect to π^{\prime}

Correctness of successive shortest path algorithm

Corollary: After each iteration of the successive shortest paths algorithm, f satisfies reduced cost optimality.

But still not necessarily polynomial.

Use Capacity Scaling on top of shortest path algorithm

Def:

$$
G_{f}(\Delta)=\left\{(v, w) \in G_{f}: u_{f}(v, w) \geq \Delta\right\}
$$

Capacity Scaling Algorithm for Minimum Cost Flow

Successive Shortest Path

```
f=0; \pi=0
e(v)=b(v)\forallv\inV
\Delta=2 2log\U
while }\Delta\geq
    (\Delta scaling phase )
    for every edge (v,w)\inGGf(\Delta)
        if }\mp@subsup{u}{f}{}(v,w)\geq\Delta and c\pi cov,w)<
            Send }\mp@subsup{u}{f}{}(v,w)\mathrm{ units of flow on (v,w); update f,e
    S(\Delta)}={v\inV:e(v)\geq\Delta
    T(\Delta)={v\inV:e(v)\leq-\Delta}
    while S(\Delta)\not=0 and T(\Delta)\not=0
        Pick a node k}\inS(\Delta)\mathrm{ and }\ell\inT(\Delta
        Compute d(v), shortest path distances from k in G}\mp@subsup{G}{f}{}(\Delta
            w.r.t. edge distances c}\mp@subsup{c}{}{\pi}\mathrm{ .
        Let P be a shortest path from k to \ell.
            Set }\pi=\pi-
            Let }\delta=\operatorname{min}{e(k),-e(\ell),\operatorname{min}{\mp@subsup{u}{f}{}(v,w):(v,w)\inP}
            Send \delta units of flow on the path P
            Update f, G
    \Delta=\Delta/2
```


Analysis of Running Time

