Minimum Cost Flow by Successive Shortest Paths

- Initialize to the 0 flow
- Repeat
 - Send flow along a shortest path in G_f

Comments:

- Correctly computes a minimum-cost flow
- Not polynomial time.
- Simple bound of O((nm)(mU)) time.

Pseudoflow

Pseudoflow: A pseudoflow is a function on the edges of a graph satisfying $0 \le f(v, w) \le u(v, w) \ \forall (v, w) \in E$

• Given a pseduflow f, we define the "excess" at v as

$$e(v) = b(v) + \sum_{w \in V} f(w, v) - \sum_{w \in V} f(v, w).$$

- If $e(v) = 0 \quad \forall v \in V$, then a pseudoflow is a flow.
- We define reduced cost optimality of a pseudoflow f as

$$\exists \pi \text{ s.t. } c^{\pi}(v,w) \geq 0 \ \forall (v,w) \in G_f$$

Strategy: Maintain an f and π such that f is a pseudoflow satisfying reduced cost optimality. Work to make f a flow. When f is a flow, you know it is optimal.

How do you initialize?

- \bullet You can assume that $\ c(v,w) \geq 0 \quad \forall (v,w) \in E$. Then the 0-flow satisfies reduced cost optimality.
- But what if the assumption doesn't hold?

How do you initialize?

- \bullet You can assume that $\ c(v,w) \geq 0 \ \forall (v,w) \in E$. Then the 0-flow satisfies reduced cost optimality.
- But what if the assumption doesn't hold?
- $\bullet \mbox{ Set } f(v,w) = u(v,w) \mbox{ for all edges with } c(v,w) < 0$.
- Now, all edges in G_f , satisfy $c^{\pi}(v, w) \ge 0$.
- Update e(v) accordingly.

Successive Shortest Paths for Minimum Cost Flow

Successive Shortest Path

```
f = 0; \ \Pi = 0
 1
    e(v) = b(v) \; \forall v \in V
 \mathbf{2}
     Initialize E = \{v : e(v) > 0\} and D = \{v : e(v) < 0\}
 3
     while E \neq 0
 4
 \mathbf{5}
           Pick a node k \in E and \ell \in D, s.t. \ell is reachable from k in G_f.
           Compute d(v), shortest path distances from k in G_f
 6
              w.r.t. edge distances c^{\pi}.
           Let P be a shortest path from k to \ell.
 7
 8
           Set \pi = \pi - d
           Let \delta = \min\{e(k), -e(\ell), \min\{u_f(v, w) : (v, w) \in P\}\}
 9
           Send \delta units of flow on the path P
10
           Update f, G_f, E, D and c^{\pi}.
11
```

Correctness of successive shortest path algorithm

Lemma: Let f be a pseudoflow satisfying reduced cost optimality with respect to π . Let d(v) be the shortest path distance from some node sto v in G_f with respect to c^{π} . Then

- f satisfies reduced cost optimality with respect to $\pi' = \pi d$.
- $c^{\pi'}(v,w) = 0$ if (v,w) is on a shortest path from *s* to some other node.

Lemma: Let f' be the pseduoflow at the end of the while loop. Then f' satisfies reduced cost optimality with respect to π'

Correctness of successive shortest path algorithm

Corollary: After each iteration of the successive shortest paths algorithm, f satisfies reduced cost optimality.

But still not necessarily polynomial.

Use Capacity Scaling on top of shortest path algorithm

Def:

 $G_f(\Delta) = \{(v, w) \in G_f : u_f(v, w) \ge \Delta\}$

Capacity Scaling Algorithm for Minimum Cost Flow

Successive Shortest Path

1	$f = 0; \pi = 0$
2	$e(v) = b(v) \; \forall v \in V$
3	$\Delta = 2^{\lfloor \log \rfloor U}$
4	while $\Delta \geq 1$
5	$(\Delta \text{ scaling phase })$
6	for every edge $(v, w) \in G_f(\Delta)$
7	if $u_f(v,w) \ge \Delta$ and $c^{\pi}(v,w) < 0$
8	Send $u_f(v, w)$ units of flow on (v, w) ; update f, e
9	$S(\Delta) = \{ v \in V : e(v) \ge \Delta \}$
10	$T(\Delta) = \{ v \in V : e(v) \le -\Delta \}$
11	while $S(\Delta) \neq 0$ and $T(\Delta) \neq 0$
12	Pick a node $k \in \underline{S}(\Delta)$ and $\ell \in \underline{T}(\Delta)$
13	Compute $d(v)$, shortest path distances from k in $G_f(\Delta)$
	w.r.t. edge distances c^{π} .
14	Let P be a shortest path from k to ℓ .
15	Set $\pi = \pi - d$
16	Let $\delta = \min\{e(k), -e(\ell), \min\{u_f(v, w) : (v, w) \in P\}\}$
17	Send δ units of flow on the path P
18	Update $f, G_f(\Delta), S(\Delta), T(\Delta)$ and c^{π} .
19	$\Delta = \Delta/2$

Analysis of Running Time