Minimum Cost Flow

Notations:
- Directed graph \(G = (V, E) \)
- Let \(u \) denote capacities
- Let \(c \) denote edge costs.
- A flow of \(f(v, w) \) units on edge \((v, w)\) contributes cost \(c(v, w)f(v, w) \) to the objective function.

Different (equivalent) formulations
- Find the maximum flow of minimum cost.
- Send \(x \) units of flow from \(s \) to \(t \) as cheaply as possible.
- General version with supplies and demands
 - No source or sink.
 - Each node has a value \(b(v) \).
 - positive \(b(v) \) is a supply
 - negative \(b(v) \) is a demand.
 - Find flow which satisfies supplies and demands and has minimum total cost.
General version of min-cost flow

- Directed graph $G = (V, E)$
- non-negative edge capacities u
- edge costs c
- Supply/demand b on each vertex

\[
\begin{align*}
\min & \sum_{(v, w) \in E} c(v, w)f(v, w) \\
\text{subject to} & \\
& f(v, w) \leq u(v, w) \quad \forall (v, w) \in E \\
& \sum_{w \in V} f(v, w) - \sum_{w \in V} f(w, v) = b(v) \quad \forall v \in V \\
& f(v, w) \geq 0 \quad \forall (v, w) \in E
\end{align*}
\]
Assumptions

- if $(v, w) \in E$, then $(w, v) \notin E$
- $\sum_v b(v) = 0$
- Graph is directed
- costs/capacities are integral
- There exists a directed path of infinite capacity between each pair of nodes.
Residual Graph

- Capacity is as for flow (now use $u_f(v,w)$ for residual capacity)
- If $(v, w) \in E$ and $(w, v) \in E_f$ then $c(w, v) = -c(v, w)$.
Optimality of a flow 1: Negative Cycles

Characterization 1: A feasible flow f is optimal iff G_f has no negative cycles.

Note 1: A feasible flow is one satisfying all supplies/demands. The 0-flow is not feasible (unless all $b(v) = 0$).

Note 2: Flow decomposition for min-cost flow. The difference between any two feasible flows is a collection of cycles.
Node Potentials

• Similar to shortest paths, we use node potentials $\pi(v)$.

• **Reduced cost of edge** (v, w),

 $$c^\pi(v, w) = c(v, w) - \pi(v) + \pi(w)$$

• For any cycle X, we have

 $$\sum_{(v,w) \in X} c^\pi(v, w) = \sum_{(v,w) \in X} c(v, w)$$
Optimality 2: Reduced Cost Optimality

Reduced Cost Optimality: A feasible flow f is optimal iff there exists potentials π such that

$$c^\pi(v, w) \geq 0 \quad \forall (v, w) \in G_f$$
A feasible flow f is optimal iff there exists potentials π such that for all edges $(v, w) \in G$

- if $c^\pi(v, w) > 0$ then $f(v, w) = 0$
- if $0 < f(v, w) < u(v, w)$ then $c^\pi(v, w) = 0$
- if $c^\pi(v, w) < 0$ then $f(v, w) = u(v, w)$.
More on f and π

Two Questions;

- Given an optimal f, how do we compute π?
- Given an optimal π, how do we compute f?
First Answer

Given an optimal f, how do we compute π?

Solution:
- Use Reduced Cost Optimality,
- Compute shortest path distances d in G_f,
- Let $\pi = -d$
Given an optimal π, how do we compute f?

Solution

- Use Complimentary Slackness
- Fix f on the edges with $c^\pi(v, w) < 0$ or $c^\pi(v, w) > 0$
- Solve the resulting max flow problem on edges with $c^\pi(v, w) = 0$
There are many algorithms for min cost flow, including:

- Cycle cancelling algorithms (negative cycle optimality)
- Successive Shortest Path algorithms (reduced cost optimality)
- Out-of-Kilter algorithms (complimentary slackness)
- Network Simplex
- Push/Relabel Algorithms
- Dual Cancel and Tighten
- Primal-Dual
- ...
Cycle Cancelling Algorithm

Basic Algorithm (Klein’s Algorithm)

- Find a feasible flow f (solve a maximum flow)
- While there exists a negative cost cycle X in G_f
 - Let $\delta = \min_{(v, w) \in X} u_f(v, w)$
 - Send δ units of flow around X

Analysis:

- Let $U = \max_{(v, w) \in E} u(v, w)$
- Let $C = \max_{(v, w) \in E} |c(v, w)|$
- For any feasible flow $-mCU \leq c(f) \leq mCU$
- Each iteration of the Basic Cycle Cancelling Algorithm decreases objective by at least 1.

- **Conclusion:** At most $2mCU$ iterations.
- Running time $= O(nm^2CU)$. Not polynomial.
Ideas for Improvement

– Send flow around most negative cycle. (NP-hard to find)
– How many iterations would that be?
Ideas for Improvement

– Send flow around most negative cycle. (NP-hard to find)
– How many iterations would that be?

Analysis:
– The difference between any two feasible flows is the union of at most m cycles.
– Let f be the current flow, f^* be the optimal flow.
– Consider $f - f^*$. It is the union of at most m cycles.
– The most negative cycle in $f - f^*$ must have cost at least

$$\frac{1}{m}(f^* - f)$$

.
Analysis continued

– Each iteration gets \(\frac{1}{m} \) of the way to the optimal flow.
– Equivalently, each iteration decreases the distance to the optimal flow by a \(1 - \frac{1}{m} \) factor.
– Initial distance is at most \(2mCU \).
– Once we get within one of the optimal flow, we are done, since flows, and costs of flows are integers.

Conclusion: The number of iterations is

\[
\log_{1/(1-1/m)}(mCU)
\]

Analysis:

\[
\log_{1/(1-1/m)}(mCU) = \frac{\log(mCU)}{\log(1/(1 - \frac{1}{m}))} \\
\approx \frac{\log(mCU)}{\frac{1}{m+1}} \\
= (m + 1) \log(mCU)
\]

There are \(O(m \log(mCU)) \) iterations.
Cycle Cancelling

• If we could find most negative cycle, there would be a polynomial number of iterations.

• Finding the most negative cycle is NP-hard.

• Solution: Find minimum mean cycle and cancel it.

• We will show that the minimum mean cycle “approximates” the most negative cycle well.
Minimum Mean Cycle Algorithm

• Find a feasible flow f (solve a maximum flow)
• While there exists a negative cost cycle X in G_f
 – Let X be the minimum mean cycle
 – Let $\delta = \min_{(v, w) \in X} u_f(v, w)$
 – Send δ units of flow around X (Maintain potentials π at nodes).

Note: Flows are always feasible in this algorithm

Def: A flow f is ϵ-optimal if there exists potentials π such that

$$c^\pi(v, w) \geq -\epsilon \ \forall (v, w) \in G_f$$
Lemma:

- Any feasible flow is C-optimal.
- If $\epsilon < 1/n$, then an ϵ-optimal flow is optimal.
Main Theorem

Defining ϵ given f and π: Given π and f, let $\epsilon^\pi(f) = -\min_{(v,w)\in G_f}\{c^\pi(v,w)\}$. This value is the smallest ϵ for which the flow f is ϵ-optimal.

Choosing π, given f

- Note that f is not optimal, so we cannot just run shortest paths to find an optimal π.
- Let $\epsilon(f) = \min_\pi \epsilon^\pi(f)$.
- Let $\mu(f)$ be the minimum mean cycle value in G_f.

Theorem Given any feasible flow f

$$\epsilon(f) = -\mu(f)$$
Lemma: Let f be a feasible non-optimal flow. Let X be the minimum mean cycle in G_f. Then there exist π s.t.

$$c^\pi(v,w) = \mu(f) = -\epsilon(f) \quad \forall (v,w) \in X$$
Lemma: Let f be a feasible non-optimal flow. Let X be the minimum mean cycle in G_f. Suppose we push flow around X to obtain f'. Then $\epsilon(f') \leq \epsilon(f) = \epsilon$.
Lemma: Let f be a feasible non-optimal flow. Suppose that we execute m iterations of the minimum-mean cycle algorithm to obtain f. Then, if the algorithm has not terminated, we have that

$$\epsilon(f') \leq \left(1 - \frac{1}{n}\right) \epsilon(f)$$

.
Summary

• In m iterations, ϵ decreases by a $1 - 1/n$ factor.
• In nm iterations, ϵ decreases by a $(1 - 1/n)^n \approx 1/e$ factor.
• Initially $\epsilon \leq C$
• We stop when $\epsilon \leq 1/n$
• Decrease by a factor of $e \ln(nC)$ times.
• Therefore, number of iterations is $O(nm \log(nC))$
• Running time is $O(n^2m^2 \log(nC))$

Nice feature of algorithm: No explicit scaling. Explicit scaling enforces a lower bound.
Strongly Polynomial Algorithm

- Recall that strongly polynomial means polynomials in n and m and “independent” of C and U.
- We have seen strongly polynomial algorithms for maximum flow.
- No strongly polynomial algorithm is known for linear programming.
- No strongly polynomial algorithm is known for multicommodity flow.
- We will see a strongly polynomial algorithm for minimum cost flow, one of the “hardest” problems for which such an algorithm exists.
- Strongly polynomial is mainly a theoretical issue.

Theorem: The minimum mean cycle algorithm runs in $O(n^2m^3 \log n)$ time.
Analysis

Ideas for strongly polynomial algorithm

• If, at some point $|c^\pi(v, w)| \gg \epsilon(f)$, then (v, w) if fixed, the flow will never change.

 – If $c^\pi(v, w)$ large positive, you never want to put most flow on it.
 – If $c^\pi(v, w)$ large negative, you never want to remove flow from it.

More precisely

• An edge if ϵ-fixed if the flow on that edge is the same for all ϵ'-optimal flows, for all $\epsilon' \leq \epsilon$.

• Once an edge is ϵ-fixed, we can freeze the flow on that edge, and ignore the edge for the remainder of the algorithm.

• We therefore have a notion of progress that depends on the number of edges of the graph.
Analysis

Theorem If $|c^π(v, w)| ≥ 2nε(f)|$, then (v, w) is $ε$-fixed.
Analysis Continued

Theorem: Every $nm(\ln n + 1)$ iterations, at least one edge becomes ϵ-fixed.

Corollary: Total of $O(nm^2 \lg n)$ iterations and $O(n^2m^3 \lg n)$ running time.