## Internet Routing Example

Acme Routing Company wants to route traffic over the internet from San Fransisco to New York. It owns some wires that go between San Francisco, Houston, Chicago and New York. The table below describes how many kilobytes can be routed on each wire in a second. Figure out a set of routes that maximizes the amount of traffic that goes from San Francisco to New York.

```
Cities Maximum number of kbytes per second
S.F. - Chicago 3
S.F. - Houston 6
Houston - Chicago 2
Chicago - New York 7
Houston - New York 5
```



One commodity, one source, one sink

## Maximum Flows

- A flow network $G=(V, E)$ is a directed graph in which each edge $(u, v) \in E$ has a nonnegative capacity .
- If $(u, v) \notin E$, we assume that $c(u, v)=0$.
- We distinguish two vertices in a flow network: a source $s$ and a sink $t$.

A flow in $G$ is a real-valued function $f: V \times V \rightarrow R$ that satisfies the following two properties:

Capacity constraint: For all $u, v \in V$, we require $0 \leq f(u, v) \leq c(u, v)$.
Flow conservation: For all $u \in V-\{s, t\}$, we require

$$
\sum_{v \in V} f(v, u)=\sum_{v \in V} f(u, v) .
$$

The value of a flow $f$ is defined as

$$
\begin{equation*}
|f|=\sum_{v \in V} f(s, v)-\sum_{v \in V} f(v, s), \tag{1}
\end{equation*}
$$

Example

2


Solutions


## Internet Advertising



## Availability Queries

## Given:

- Forecasts on ad impressions for each publisher's slot
- A reservation request

Compute: The maximum number of reservations that can be satisfied from the reservation request.

## Example

## An advertiser wants:

- 50 placements on sports slots
- 50 placements on afternoon slots

Publisher is offering

- 40 placements on slots that are sports and non-afternoon
- 40 placements on slots that are sports and afternoon
- 40 placements on slots that are non-sports and afternoon



## Example is a max flow problem



## Algorithm: Ford Fulkerson

Greedily send flow from source to sink.
Ford-Fulkerson-Method ( $G, s, t$ )
initialize flow $f$ to 0
while there exists an augmenting path $p$
augment flow $f$ along $p$
return $f$
For this to work, we need a notion of a residual graph

## Residual Graph

The residual graph is the graph of edges on which it is possible to push flow from source to sink.

- The residual capacity of $(u, v)$, is

$$
c_{f}(u, v)= \begin{cases}c(u, v)-f(u, v) & \text { if }(u, v) \in E,  \tag{2}\\ f(v, u) & \text { if }(v, u) \in E, \\ 0 & \text { otherwise } .\end{cases}
$$

- The residual graph $G_{f}$ is the graph consisting of edges with positive residual capacity



## Residual Network


(a)

(c)

(b)

(d)

## Updating a Flow

- Send flow along the path defined by the residual graph.
- Amount: minimum of capacity of all residual edges in the augmenting path.
- If a residual edge is a graph edge, then add the flow.
- If a residual edge is a reverse edge, then subtract the flow.

(a)

(c)

(b)

(d)

$$
s-t \text { Cuts }
$$

## An $s$ - $t$ cut satsfies

- $s \in S, t \in T$
- $S \cup T=V, \quad S \cap T=\emptyset$


Capacity of a cut (only forward edges)

$$
c(S, T)=\sum_{u \in S, v \in T} c(u, v)
$$

Flow crossing a cut (net flow)

$$
(S, T)=\sum_{u \in S, v \in T} f(u, v)-\sum_{u \in T, v \in S} f(u, v)
$$

## Properties of cuts and flows

Capacity of a cut (only forward edges)

$$
c(S, T)=\sum_{u \in S, v \in T} c(u, v)
$$

Flow crossing a cut (net flow)

$$
(S, T)=\sum_{u \in S, v \in T} f(u, v)-\sum_{u \in T, v \in S} f(u, v)
$$

- For all cuts $(S, T)$ and all feasible flows $f, f(S, T) \leq c(S, T)$ (weak duality).
- For all pairs of cuts $\left(S_{1}, T_{1}\right)$ and $\left(S_{2}, T_{2}\right)$, and all feasible flows $f$, $f\left(S_{1}, T_{1}\right)=f\left(S_{2}, T_{2}\right)$.

Examples of cuts


## Max-flow min-cut theorem

If $f$ is a flow in a flow network $G=(V, E)$ with source $s$ and sink $t$, then the following conditions are equivalent:

1. $f$ is a maximum flow in $G$.
2. The residual network $G_{f}$ contains no augmenting paths.
3. $|f|=c(S, T)$ for some cut $(S, T)$ of $G$.

Proof

## Ford Fulkerson expanded

```
Ford - Fulkerson(G, s,t)
```

```
for each edge (u,v) \inE(G)
```

    \(f(u, v)=0\)
    while there exists a path $p$ from $s$ to $t$ in the residual network $G_{f}$
$c_{f}(p)=\min \left\{c_{f}(u, v):(u, v)\right.$ is in $\left.p\right\}$
for each edge $(u, v)$ in $p$
if $(u, v) \in E$
$f(u, v)=f(u, v)+c_{f}(p)$
else $f(v, u)=f(v, u)-c_{f}(p)$

## Algorithm

Residual graph (Capacities)
Graph (Flow/Capacity)
(a)


(b)


## Algorithm continued

Residual graph (Capacities)
(d)

(e)

(f)


Graph (Flow/Capacity)


## Analysis

- 1 iteration of $\mathbf{F F}$ takes $O(E+V)$ time (breadth-first search plus bookkeeping).
- Each iteration sends at least one unit of flow.
- Total time $O\left(f^{*} E\right)$.
- This algorithm is only psuedo-polynomial.

(a)

(b)

(c)


## A polynomial algorithm- Shortest Augmenting Path

Algorithm due to Edmonds and Karp, Dinic
Algorithm

- Run Ford-Fulkerson, but always choose the shortest augmenting path in the residual graph.
- Breadth-first search implements this algorithm.


## Idea for Analysis

## Intuition

- Augment along shortest path in residual graph.
- Short paths get "saturated" and disappear.
- Future augmenting paths are along longer paths
- Eventually algorithm terminates because no more paths exist (remember that no augmenting path can have length greater than $V$.

This doesn't quite work, but is close

## Analysis

- Let $\delta(v)$ be the shortest path distance from $v$ to $\mathbf{t}$ in $G_{f}$.
- Lemma: $\delta(v)$ is monotonically increasing over time.


## Proof:

- Let $\delta$ be shortest path distances before an augmentation.
- Let $\delta^{\prime}$ be shortest path distances after an augmentation.
- Suppose, f.p.o.c. that for some $v, \delta^{\prime}(v)<\delta(v)$, and $v$ is the minimum vertex with this property (w.r.t $\delta^{\prime}$ )

Before


How could this happen?

## How could this happen?

Before


- $(v, w) \in G_{f}^{\prime}$ but not in $G_{f}$ • (why?)
- We must have sent flow on $(w, v)$ in the augmenting path
- $\delta(w)=6$
- $\delta^{\prime}(w)<\delta(w)$, which contradicts $v$ being the minimum vertex whose label decreased.

Conclusion: $\quad \delta(v)$ never decreases.

## Analysis Continued

- Each $\delta(v)$ increases at most $V$ times.
- Total number of times any $\delta(v)$ increases is at most $V^{2}$.
- We need to tie this to an augmenting path.
- Problem: A particular augmenting path may not increase any $\delta(v)$. (How can this happen?)

Solution We need to find some other event that happens on every augmenting path and then relate this event to increasing distances.

Conclusion: $\quad \delta(v)$ never decreases.

## Analysis Continued

- $0 \leq \delta(v) \leq V$
- $\delta(v)$ never decreases.
- Each $\delta(v)$ increases at most $V$ times.
- Total number of times some $\delta(v)$ increases is at most $V^{2}$.
- We need to tie this to an augmenting path.
- Problem: A particular augmenting path may not increase any $\delta(v)$. (How can this happen?)

Solution We need to find some other event that happens on every augmenting path and then relate this event to increasing distances.

## Edge Saturation

- If an augmeting path send $c_{f}(v, w)$ units of flow on edge $(v, w)$ then we call the push saturating.
- Every augmenting path saturates at least one edge. (Why?)


## Analysis Continued

## Edge Saturation

- If an augmeting path send $c_{f}(v, w)$ units of flow on edge $(v, w)$ then we call the push saturating.
- Every augmenting path saturates at least one edge.

Focus on a particular pair of vertices $(v, w)$

- Suppose that $(v, w) \in G_{f}$
- What has to happen between two consecutive saturations of $(v, w)$


## Events Between 2 edge saturations



- Both $v$ and $w$ have to be relabeled.
- So each edge can be saturated at most $V / 2$ times.


## Putting it together

- Each edge (or its reverse) can be saturated at most $V / 2$ times.
- There are most $E V$ edge saturations.
- Each augmenting causes at least one edge saturation
- Therefore, there are at most $E V$ augmenting paths.
- Recall $O(E)$ time per augmenting path.

A max flow can be found in $O\left(E^{2} V\right)$ time .
Faster augmenting path based algorithms exist, most based on finding the augmenting paths more efficiently.

- $O(V E \log V)$ (Sleator and Tarjan)
- $O\left(\min E^{3 / 2}, V^{2 / 3} E \log \left(V^{2} / E\right) \log C\right)$ (Goldberg and Rao)


## Push relabel algorithms

## Algorithm due to Goldberg and Tarjan

## Ideas

- Maintain variables $d(v)$ which are "distances", estimates (lower bounds) on the distance to the sink (or source) in the residual graph
- Push flow over one edge at a time, pushing from a higher distance vertex to a lower distance vertex.
- Allow excess flow to accumulate at a vertex.
- Maintain a preflow rather than a flow.

Capacity constraint: For all $u, v \in V$, we require $0 \leq f(u, v) \leq c(u, v)$.
Relaxed Flow conservation: For all $u \in V-\{s, t\}$, we require

$$
\sum_{v \in V} f(v, u) \geq \sum_{v \in V} f(u, v) .
$$

Define excess

$$
\begin{equation*}
e(u)=\sum_{v \in V} f(v, u)-\sum_{v \in V} f(u, v) \tag{3}
\end{equation*}
$$

Example

$$
\text { (s) } 2 / 3,5
$$

## Comparison with augmenting paths

- Augmenting paths
- Always maintains a flow (feasibility)
- Works towards optimality (maximum flow)
- Push/relabel
- Always maintains a preflow and works towards a flow
- Maintains a superoptimal preflow and moves towards feasibility.


## Basic Operations

- If $e(v)>0$ then $\mathbf{v}$ is active.
- If $c_{f}(v, w)>0$ and $d(v)=d(w)+1$ then $(v, w)$ is admissible.

Push from active vertices over admissible edges.
Push(u,v)
1 // Applies when: $u$ is active, $c_{f}(u, v)>0$, and $d(u)=d(v)+1$.
2 // Action: Push $f(u, v)=\min \left(e(u), c_{f}(u, v)\right)$ units of flow from $u$ to $v$.
$3 \Delta(u, v)=\min \left(e(u), c_{f}(u, v)\right)$
$4 \quad$ if $(u, v) \in E$
$5 \quad f(u, v)=f(u, v)+\Delta(u, v)$
6 else $f(v, u)=f(v, u)-\Delta(u, v)$
$7 \quad e(u)=e(u)-\Delta(u, v)$
$8 \quad e(v)=e(v)+\Delta(u, v)$
Relabel When a vertex has all its outgoing residual edges pointing uphill, we relabel it.

Relabel(u)
$1 / /$ Applies when: $u$ is active and for all $v \in V$ such that $(u, v) \in E_{f}$, we have $d(u) \leq d(v)$.
2 // Action: Increase the label of $u$.
$3 d(u)=1+\min \left\{d(v):(u, v) \in E_{f}\right\}$

## Generic Push Relabel Algorithm

```
Initialize - Preflow \((G, s)\)
1 for each vertex \(v \in V(G)\)
\(2 \quad d(v)=0\)
    \(e(v)=0\)
    for each edge \((u, v) \in E(G)\)
        \(f(u, v)=0\)
    \(d(s)=|V(G)|\)
    for each vertex \(v \in \operatorname{Adj}(s)\)
        \(f(s, v)=c(s, v)\)
        \(e(v)=c(s, v)\)
        \(e(s)=e(s)-c(s, v)\)
    Generic - Push - Relabel ( \(G\) )
1 Initialize-Preflow \((G, s)\)
2 while there exists an applicable push or relabel operation

\section*{Run Through Example}

int


relablel a


posh (a,b)

\[
\begin{aligned}
& p \text { ish }(b, t)
\end{aligned}
\]
\[
\text { Quabel } \rightarrow
\]

push (b,a)

retsbel a


Flow!

\section*{Properties of Algorithm (without proofs)}
- At any point, any active vertex either has a path to the source or the sink in the residual graph.
- There is never an \(s-t\) path in \(G_{f}\).
- Let \(\delta(v)\) be the minimum of distance to sink and \(\mathbf{V}\) plus distance to soure in \(G_{f}\).
- If \(v\) is active then \(d(v) \leq \delta(v)\). (inductive proof, similar to shortest augmenting path, new short paths are not created).
- \(d(v) \leq d(w)+1\) for any \((v, w) \in G_{f}\).
- If \(e(v)>0\) then either
\(-v\) has an outgoing admissible edge
\(-v\) can be relabeled (and the label will increase)
- If \(e(v)=0\) for all \(v \in V-\{s, t\}\), then \(f\) is a maximum flow.

\section*{Proof of last statement}
- \(f\) is a flow by the definition of preflow.
- \(f\) is maximum because there is no \(s-t\) path in \(G_{f}\).

\section*{Running Time}

We will need to bound
1. Number of relabels
2. Time per relabel
3. Number of pushes
4. Time per push
5. Bookkeeping time

\section*{Easy ones:}

Relabel(u)
1 // Applies when: \(u\) is active and for all \(v \in V\) such that \((u, v) \in E_{f}\), we have \(d(u) \leq d(v)\).
2 // Action: Increase the label of \(u\).
\(3 \quad d(u)=1+\min \left\{d(v):(u, v) \in E_{f}\right\}\)

Time per relabel
- Easy bound: \(O(V)\)
- Time to relabel each vertex once : \(O\left(V^{2}\right)\)

\section*{Easy ones:}

\section*{Relabel( \(u\) )}
\(1 / /\) Applies when: \(u\) is active and for all \(v \in V\) such that \((u, v) \in E_{f}\), we have \(d(u) \leq d(v)\).
2 // Action: Increase the label of \(u\).
\(3 d(u)=1+\min \left\{d(v):(u, v) \in E_{f}\right\}\)

Time per relabel
- Easy bound: \(O(V)\)
- Time to relabel each vertex once : \(O\left(V^{2}\right)\)
- Better bound: \(O(\) degree \((v))\)
- Time to relabel each vertex once: \(\Sigma_{v} \operatorname{degree}(v)=O(E)\)
(This is an example of amortized analysis)

Number of relabels
- Vertex labels are at most 2 V , so each vertex is relabelled at most 2 V times.
- Total time spent relabelling \(=V \Sigma_{v} \operatorname{degree}(v)=O(E V)\)

\section*{Pushes}

\section*{Push (u,v)}

1 // Applies when: \(u\) is active, \(c_{f}(u, v)>0\), and \(d(u)=d(v)+1\).
2 // Action: Push \(\Delta(u, v)=\min \left(e(u), c_{f}(u, v)\right)\) units of flow from \(u\) to \(v\).
\(3 \Delta(u, v)=\min \left(e(u), c_{f}(u, v)\right)\)
4 if \((u, v) \in E\)
\(5 \quad f(u, v)=f(u, v)+\Delta(u, v)\)
6 else \(f(v, u)=f(v, u)-\Delta(u, v)\)
\(7 \quad e(u)=e(u)-\Delta(u, v)\)
\(8 \quad e(v)=e(v)+\Delta(u, v)\)

Easy part
- Time per push \(=O(1)\).
- Bookkeeping (can be amortized against other operations with reasonable data structures and rules for choosing push/relabel operations).

Two types of Pushes
- Saturating push: Sends \(c_{f}(v, w)\) ) flow on \((v, w)\)
- Non-saturating push: Sends less flow. ( \(e(v)\) ).

\section*{Bounding Saturating Pushes}

Consider a saturating push on \((v, w)\). What has to happen before the next saturating push on \((v, w)\) ?

\section*{Bounding Saturating Pushes}

Consider a saturating push on \((v, w)\). What has to happen before the next saturating push on \((v, w)\) ?
- \(w\) has to be relabelled
- A push on \((w, v)\) must occur
- \(v\) has to be relabelled.

\section*{Conclusion}
- Between any two saturating pushes on \((v, w), v\) must be relabelled.
- \(v\) can be relabelled at most \(2 V\) times.
- There are at most \(2 V\) saturating pushes on \((v, w)\).
- The total number of saturating pushes is \(O(V E)\).

\section*{Non-saturating pushes}

Issue After a non-saturating push, the graph does not change, nothing need be relabelled and another non-saturating push can occur on the edge before anything significant happnes.

Solution As with shortest-augmeting-path, we won't count directly, but will bound other operations and related to non-saturating pushes. We will do so via means of a potential function.
\[
\Phi=\sum_{v: e(v)>0} d(v)
\]

\section*{Analysis}
\[
\Phi=\sum_{v: \ell(v)>0} d(v)
\]
- After initialiazation \(\Phi \leq 2 V^{2}\).
- At termination \(\Phi=0\).
- Let \(R\) be total increase in \(\Phi\) due to relabellings.
- Let \(S\) be total increase in \(\Phi\) due to saturating pushes.
- Each non-saturating push decreases \(\Phi\) by at least 1. (Why?).


\section*{Putting these facts together}
- Total decrease in \(\Phi\) associated with non-saturating pushes is at most \(2 V^{2}-0+R+S\).
- Each non-saturating push decreases \(\Phi\) by at least 1. (Why?).
- Number of non-saturating pushes is at most \(2 V^{2}-0+R+S\).

\section*{Bounding R and S}
\[
\Phi=\sum_{v: e(v)>0} d(v)
\]

\section*{Relabellings}
- Each relabelling must increase \(\Phi\) by at least 1 .
- Total increase in \(\Phi\) associated with relabelling \(v\) is at most \(2 V\).
- Total increase associated with all relabellings is at most \(2 V^{2}\).

Saturating Pushes
- A saturating push leaves excess at \(v\). It adds excess to \(w\).
- If \(w\) already had excess, then \(\Phi\) is unchanged.
- If \(w\) did not have excess, then \(\Phi\) increases by \(d(w)\), which is at most \(2 V\).
- There are at most \(O(E V)\) saturating pushes, therefore total increase due to saturating pushes is \(O\left(E V^{2}\right)\).

\section*{Putting it Together}

Number of non-saturating pushes is at most
\[
2 V^{2}-0+R+S=O\left(V^{2}+E V+E V^{2}\right)=O\left(E V^{2}\right)
\]

Conclusion: Running time is \(O\left(E V^{2}\right)\).
Note: Can be improved by
- Choosing operations more carefully.
- Better data structures to represent flow
- Best running times are close to \(V E\).
- Winner in practice, assuming that one uses two additional heuristic ideas
- gap heuristic
- global relabellings```

