Carpool Fairness

	Days				
Person	1	2	3	4	5
1	X	X	X		
2	\mathbf{X}		\mathbf{X}		
3	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}
4		\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}

What is a fair division of driving?

Carpool Fairness

	Days				
Person	1	2	3	4	5
1	\mathbf{X}	X	X		
2	\mathbf{X}		\mathbf{X}		
3	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}
4		\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}

What is a fair division of driving?

	Days					
Person	1	2	3	4	5	Total responsibility r_i
1	$\begin{array}{c} 1/3 \\ 1/3 \end{array}$	1/3	1/4			$11/12 \\ 7/12$
2	1/3		1/4			7/12
3	1/3	1/3	1/4	1/2	1/2	23/12
4		1/3	1/4	1/2	1/2	19/12

Proposal: Person i should drive no more than $\lceil r_i \rceil$ times.

Formaulation as a flow problem

	Days					
Person	1	2	3	4	5	Total responsibility r_i
1	1/3	1/3	1/4			11/12
2	1/3		1/4			7/12
3	1/3	1/3	1/4	1/2	1/2	23/12
4		1/3	1/4	1/2	1/2	19/12

- Bipartite graph, nodes for each person and day.
- Think of r_i as supply for each person
- Think of 1 as demand for each day
- Edges between person and day if they can drive on that day..

Does a flow of value 5 exist?

Fractional/Integral flow

- A fractional flow of value 5 exists in graph with source-incident capacities $[r_i]$ and flow of r_i
- Theorem If capacities are integral a fractional flow of value x exists, then an integral flow for value x exists.
- Use the integral flow to solve the carpool problem.

Baseball Elimination

(SportsWriters end of Season Problem)

Team	Wins w_i	$oxed{Games}\ \mathbf{left}\ g_i$	Games against g_{ij}			
			NY	\mathbf{Bos}	Tor	Bal
NY Yankees	93	8	_	1	6	1
Boston Red Sox	89	4	1	-	0	3
Toronto Blue Jays	88	7	6	0	-	1
Baltimore Orioles	86	5	1	3	1	-

Question: Which teams are eliminated and which are not?

Formalism

- $\bullet w_i$ wins for team i
- g_i games left for team i
- $ullet g_{ij}$ games left between i and j

For any subset R of teams T:

- wins in R, $w(R) = \sum_{i \in R} w_i$
- games left in R, $g(R) = \sum_{i,j \in R, i < j} g_{ij}$

A lower bound on a number of games that some team must win

$$a(R) = \frac{w(R) + g(R)}{|R|}$$

Claim: For $i \in T$, $R \subseteq T - \{i\}$, and $a(R) > w_i + g_i$, then i is eliminated.

Justification: Some team must win the average.

A stronger condition?

Let x_{ij} be the number of times that i beats j.

Team k is not eliminated if there exist x_{ij} s.t. it is possible for team k to come in first. That is,

$$x_{ij} + x_j \qquad = g_{ij} \qquad \forall i, j \in T \tag{1}$$

$$w_k + g_k \ge w_i + \sum_{j \in T - \{k\}} x_{ij} \quad \forall i \in T$$
 (2)

$$x_{ij} \ge 0 \qquad x_{ij} \in \{0, 1\}$$
 (3)

Can also use flow problem.

Proof that flow problem solves the problem

Claims:

- If a flow f of value $\sum_{i < j} g_{ij}$ exists, then team k is not eliminated.
- If no flow of value $\sum_{i < j} g_{ij}$ exists then them k is eliminated.