Baruvka's Algorithm

- Repeat
- Every node picks its minimum incoming edge and adds to the spanning tree T
- Contract all edges in T
- How much progress is made?
- How implement an iteration?
- Total running time?

Baruvka's Algorithm

- Repeat
- Every node picks its minimum incoming edge and adds to the spanning tree T
- Contract all edges in T
- How much progress is made?
- How implement an iteration?
- Total running time?

$$
T(n, m)=T(n / 2, m-n)+O(n+m)
$$

Problem: Edges don't decrease fast enough

Eliminating Edges

- The heaviest edge on any cycle is not in the MST.
- Let F be a forest
- Let $w_{F}(u, v)$ be the maximum weight of an edge on the path from u to v in F (or ∞ if the path does not exist.
- Edge (u, v) is F-heavy if $w(u, v)>w_{F}(u, v)$ and F-light otherwise.

Claim: Let F be any forest, let (u, v) be any edge. If (u, v) is F-heavy, then (u, v) is not in the MST.

Ideas

- It is good to eliminate F-heavy edges
- The MST T would let us eliminate all non-MST edges.
- What can an F that is not an MST eliminate

Fact to accept without proof: Given G and a forrest F, we can eliminate all F-heavy edges in $O(n+m)$ time (spanning tree verification).

Algorithm $\operatorname{MST}(G)$

1. Run 3 Bruvka phases to get G^{\prime}. Let C be the contracted edges.
2. Let $G^{\prime \prime}$ be G^{\prime} with each edge included with prob. $1 / 2$.
3. Recursively compute $F^{\prime \prime}=\operatorname{MST}\left(G^{\prime \prime}\right)$.
4. Identify the \mathbf{F} "-heavy edges in G^{\prime}. Delete them to obtain $G^{\prime \prime \prime}$.
5. Recursively compute $F^{\prime \prime \prime}=\operatorname{MST}\left(G^{\prime \prime \prime}\right)$
6. Return $F^{\prime \prime \prime} \cup C$

Note: The recursion bottons out on a graph with $O(1)$ nodes.

Key Lemma: Let H be a subgraph of G where each edge is included with probability p. Let F be a Minimum Spanning Forest of H. Then the expected number of F-light edges in G is at most n / p.

Recurrence $\quad T(n, m) \leq O(n+m)+T(n / 8, m / 2)+T(n / 8, n / 4)=O(n+m)$

