
Baruvka’s Algorithm

• Repeat

– Every node picks its minimum incoming edge and adds to the span-

ning tree T

– Contract all edges in T

• How much progress is made?

• How implement an iteration?

• Total running time?

Baruvka’s Algorithm

• Repeat

– Every node picks its minimum incoming edge and adds to the span-

ning tree T

– Contract all edges in T

• How much progress is made?

• How implement an iteration?

• Total running time?

T (n, m) = T (n/2, m� n) + O(n + m)

Problem: Edges don’t decrease fast enough

Eliminating Edges

• The heaviest edge on any cycle is not in the MST.

• Let F be a forest

• Let wF (u, v) be the maximum weight of an edge on the path from u
to v in F (or 1 if the path does not exist.

• Edge (u, v) is F-heavy if w(u, v) > wF (u, v) and F-light otherwise.

Claim: Let F be any forest, let (u, v) be any edge. If (u, v) is F-heavy,

then (u, v) is not in the MST.

Ideas

• It is good to eliminate F-heavy edges

• The MST T would let us eliminate all non-MST edges.

• What can an F that is not an MST eliminate

Fact to accept without proof: Given G and a forrest F , we can eliminate

all F -heavy edges in O(n + m) time (spanning tree verification).

Algorithm MST (G)

1. Run 3 Bruvka phases to get G0 . Let C be the contracted edges.

2. Let G00 be G0 with each edge included with prob. 1/2 .

3. Recursively compute F 00 = MST (G00) .

4. Identify the F”-heavy edges in G0 . Delete them to obtain G000 .

5. Recursively compute F 000 = MST (G000)

6. Return F 000 [C

Note: The recursion bottons out on a graph with O(1) nodes.

Key Lemma: Let H be a subgraph of G where each edge is included

with probability p . Let F be a Minimum Spanning Forest of H . Then

the expected number of F-light edges in G is at most n/p .

Recurrence T (n, m)  O(n + m) + T (n/8, m/2) + T (n/8, n/4) = O(n + m)

