
Minimum Spanning Trees

• G = (V,E) is an undirected graph with non-negative edge weights w : E → Z+

• We assume wlog that edge weights are distinct

• A spanning tree is a tree with V − 1 edges, i.e. a tree that connects

all the vertices.

• The total cost (weight) of a spanning tree T is defined as w(T ) =
∑
e∈T w(e)

• A minimum spanning tree is a tree of minimum total weight.





Minimum Spanning Trees

• G = (V,E) is an undirected graph with non-negative edge weights w : E → Z+

• We assume wlog that edge weights are distinct

• A spanning tree is a tree with V − 1 edges, i.e. a tree that connects

all the vertices.

• The total cost (weight) of a spanning tree T is defined as w(T ) =
∑
e∈T w(e)

• A minimum spanning tree is a tree of minimum total weight.





Cuts

• A cut in a graph is a partition of the vertices into two sets S and T .

• An edge (u, v) with u ∈ S and v ∈ T is said to cross the cut .





Cuts

• A cut in a graph is a partition of the vertices into two sets S and T .

• An edge (u, v) with u ∈ S and v ∈ T is said to cross the cut .





Cuts

• A cut in a graph is a partition of the vertices into two sets S and T .

• An edge (u, v) with u ∈ S and v ∈ T is said to cross the cut .





Greedy Property

Recall that we assume all edges weights are unique.

Greedy Property: The minimum weight edge crossing a cut is in the

minimum spanning tree.

Proof Idea: Assume not, then remove an edge crossing the cut and replace

it with the minimum weight edge.

Restatement Lemma: Let G = (V,E) be an undirected graph with edge

weights w. Let A ⊆ E be a set of edges that are part of a minimum

spanning tree. Let (S, T ) be a cut with no edges from A crossing it. Then

the minimum weight edge crossing (S, T ) can be added to A.

Algorithm Idea: Repeatedly choose an edge according to the Lemma, add

to MST.

Challenge: Finding the edge to add.



Kruskal’s Algorithm

Idea: Consider edges in increasing order.

MST-Kruskal(G,w)

1 A← ∅
2 for each vertex v ∈ V [G]

3 do Make-Set(v)

4 sort the edges of E into nondecreasing order by weight w

5 for each edge (u, v) ∈ E, taken in nondecreasing order by weight

6 do if Find-Set(u) 6= Find-Set(v)

7 then A← A ∪ {(u, v)}
8 Union(u, v)

9 return A



Example





Analysis

• Sorting

• n UNIONS

• m FIND-SET ops

• Each UNION, FINDSET takes O(log∗ n) time.

• With Sorting – O(m log n) time

• Data already sorted – O(m log∗ n) time.



Prim’s Algorithm

Idea: Grow the MST from one node going out

MST-Prim(G,w, r)

1 for each u ∈ V [G]

2 do key [u]←∞
3 π[u]← nil

4 Insert(u)

5 key [r]← 0

6 Q← V [G]

7 while Q 6= ∅
8 do u← Extract-Min(Q)

9 for each v ∈ Adj [u]

10 do if v ∈ Q and w(u, v) < key [v]

11 then π[v]← u

12 key [v]← w(u, v)

13 Decrease-Key(v, w(u, v)



Example





Analysis

• n Inserts and Delete-Mins

• m Decrease Keys

• Use a heap. O(log n) per operation. Total O(m log n) .

• Use a fibonacci heap. Decrease Key reduced to amortized O(1) time.

Total time O(m + n log n)


