
Basics of Algorithm Analysis

• We measure running time as a function of n, the size of the input (in

bytes assuming a reasonable encoding).

• We work in the RAM model of computation. All “reasonable” oper-

ations take “1” unit of time. (e.g. +, *, -, /, array access, pointer

following, writing a value, one byte of I/O...)

What is the running time of an algorithm

• Best case (seldom used)

• Average case (used if we understand the average)

• Worst case (used most often)

We measure as a function of n, and ignore low order terms.

• 5n3 + n− 6 becomes n3

• 8n log n− 60n becomes n log n

• 2n + 3n4 becomes 2n



Asymptotic notation

big-O

O(g(n)) = {f (n) : there exist positive constants c and n0 such that

0 ≤ f (n) ≤ cg(n) for all n ≥ n0} .

Alternatively, we say

f (n) = O(g(n)) if there exist positive constants c and n0 such that

0 ≤ f (n) ≤ cg(n) for all n ≥ n0}

Informally, f (n) = O(g(n)) means that f (n) is asymptotically less than or

equal to g(n).

big-Ω

Ω(g(n)) = {f (n) : there exist positive constants c and n0 such that

0 ≤ cg(n) ≤ f (n) for all n ≥ n0} .

Alternatively, we say

f (n) = Ω(g(n)) if there exist positive constants c and n0 such that

0 ≤ cg(n) ≤ f (n) for all n ≥ n0} .

Informally, f (n) = Ω(g(n) means that f (n) is asymptotically greater than

or equal to g(n).



big-Θ

f (n) = Θ(g(n)) if and only if f (n) = O(g(n)) and f (n) = Ω(g(n)).

Informally, f (n) = Θ(g(n) means that f (n) is asymptotically equal to g(n).

INFORMAL summary

• f (n) = O(g(n)) roughly means f (n) ≤ g(n)

• f (n) = Ω(g(n)) roughly means f (n) ≥ g(n)

• f (n) = Θ(g(n)) roughly means f (n) = g(n)

• f (n) = o(g(n)) roughly means f (n) < g(n)

• f (n) = w(g(n)) roughly means f (n) > g(n)

We use these to classify algorithms into classes, e.g. n, n2, n log n, 2n.

See chart for justification



Polynomial Time

The size of a problem instance typically is described by parameters such

as:

• number of nodes n or V

• number of edges m or E

• largest capacity U

• largest cost (in absolute value) C

Input size: The size of the input, which consists of a list of nodes and

edges and their capacities and costs is typically

Θ(n + m + m logU + m logC)

.

• A polynomial algorithm is one whose running time is polynomial in

the input, i.e. is polynomial in n , m , logU , logC .

• A strongly polynomial algorithm is one whose running time is polyno-

mial in the size of the graph and independent of the size of the numbers,

i.e. is polynomial in n , m .

• A pseudo-polynomial algorithm is one whose running time is polyno-

mial in the size of the graph and the magnitude of the numbers, i.e. is

polynomial in n , m , U , C .



Commentary (with trivial interpretations excluded)

• Strongly polynomial and polymial algorithms are polynomial algorithms.

Pseudo-polynomial algorithms are not polynomial algorithms.

• Strongly polynomial algorithms are mainly a theoretical concept and do

not tend to get used in practice.

We will typically shoot for polynomial algorithms.



Some Graph terminology

• node, vertex

• edge, arc

• directed undirected

• head tail

• path

• cycle

• acyclic

• bipartite graph

• tree

• forest

• cut

• s-t cut

• connectivity

• strong connectivity

• bipartite graph



Easily Solved Graph Problems

• Connectivity

• Strong Connectivity

• Spanning trees

• Bipartiteness

• Topological Search

• Depth-first Search

• Breadth-first Search



Other Basics

Basic Data Structures

• Arrays

• Linked Lists

• Stack - LIFO

• Queue - FIFO

• Binary tree

• Hash table



Dictionary Operations on ordered set

• Insert

• Delete

• Find

• Min, Max

• Successor, Predecessor

• IncreaseKey, DecreaseKey

Comments

• Some form of a balanced binary tree supports all dictionary operations

in O(log n) time

• A hash table supports Insert, Delete and Find in O(1) expeted time



Graph Storage

• An adjacency matrix is an n by n matrix in which A[i, j] stores values

related to edge (i, j).

• An adjacency list is a length n array L of linked lists, where entry L[i]

is a list of all edges adjacent to vertex i.


