
Dealing with NP-Completeness

Note: We will resume talking about optimization problems, rather than

yes/no questions.

What to do?

• Give up

• Solve small instances

• Look for special structure that makes your problem easy (e.g. planar

graphs, each variable in at most 2 clauses, ...)

• Run an exponential time algorithm that might do well on some in-

stances (e.g. branch-and-bound, integer programming, constraint pro-

gramming)

• Heuristics – algorithms that run for a limited amount of time and return

a solution that is hopefully close to optimal, but with no guarantees

• Approximation Algorithms – algorithms that run in polynomial time

and give a guarantee on the quality of the solution returned



Heuristics

• Simple algorithms like “add max degree vertex to the vertex cover”

• Local search

• Metaheuristics are popular

– simulated annealing

– tabu search

– genetic algorithms

– GRASP

– Greedy



Approximation Algorithms

Set up: We have a minimization problem X , inputs I , algorithm A .

• OPT (I) is the value of the optimal solution on input I .

• A(I) is the value returned when running algorithm A on input I .

Def: Algorithm A is an ρ -approximation algorithm for Problem X if,

for all inputs I

• A runs in polynomial time

• A(I) ≤ ρOPT (I) .

Note: ρ ≥ 1 , small ρ is good.



Methodology

Lower bound: Given an instance I , a lower bound, LB(I) is an “easily-

computed” value such that LB(I) ≤ OPT (I).

Methodology

• Compute a lower bound LB(I) .

• Give an algorithm A , that computes a solution to the optimization

problem on input I with a guarantee that A(I) ≤ ρLB(I) for some

ρ ≥ 1 .

• Conclude that A(I) ≤ ρOPT (I) .



Matching

• A matching M of a graph G is a subset of the edges M ⊆ E , such

that each vertex v ∈ V is inciedent to at most one edge in M .

• A maximum matching can be computed in polynomial time

• A maximum matching in a bipartite graph can be computed via maxi-

mum flow.



A 2-approximation for Vertex Cover

First find a good lower bound: A matching!

Given a graph G , let

• MM(I) be the size of the maximum matching on I .

• OPT (I) be the size of the minimum-sized vertex cover on I

• V C(I) be the size of the vertex cover returned by the algorithm below

Claim: MM(I) ≤ OPT (I)

Proof: Look at each edge in the maximum matching M . Each vertex in

a vertex cover covers at most one edge in M .

Algorithm

1. Compute A maximum matching M .

2. For each edge (v, w) ∈M , add both v and w to C .



Analysis

C is a vertex cover: .

Proof: Assume not. Then some edge (v, w) has neither v nor w in C .

But then neither v nor w is incident to an edge in M , which means that

you could add (v, w) to M , contradicting the fact that M is a maximum

matching.

Solution value:

V C(I) = 2MM(I) ≤ 2OPT (I)

Therefore we have a 2-approximation algorithm.



Euler Tour

• Give an even-degree graph G , an Euler Tour is a (non-simple) cycle

that visits each edge exactly once.

• Every even-edgee graph has an Euler tour.

• You can find one in linear time.



Travelling Salesman Problem

Variant: We will consider the symmetric TSP with triangle-inequality.

• w(a, b) = w(b, a)

• w(a, b) ≤ w(a, c) + w(c, b)

Notes:

• Without triangle inequality, you cannot approximate TSP (unless P=NP)

• Assymetric version is harder to approximate.



Approximating TSP

• A minimimum spanning tree is a lower bound on the TSP. MST (I) ≤ OPT (I)

• A minimum spanning tree doubled is an even degree graph GG , and

therefore has an Euler tour of total length GG(I) , with GG(I) = 2MST (I)

.

• Because of triangle inequality, we can “shortcut” the Euler tour GG

to find a tour with TSP (I) ≤ GG(I)

Combining, we have

TSP (I) ≤ GG(I) = 2MST (I) ≤ 2OPT (I)

.

• 2-approximation for TSP

• 3/2-approximation is possible.

• If points are in the plane, there exists a polynomial time approximation

scheme, an algorithm that, for any fixed ε > 0 returns a tour of length

at most (1 + ε)OPT (I) in polynomial time. (The dependence on ε can

be large).



MAX-3-SAT

Definition Given a boolean CNF formula with 3 literals per clause. We

want to satisfy the maximum possible number of clauses.

Note: We have to invert defintion of approximation, want to find A(I) ≥ ρOPT (I)

.

Algorithm

• Randomly set each variable to true with probability 1/2 .



Analysis

• Let Y be the number of clauses satisfied.

• Let m be the number of clauses. ( m ≥ OPT (I) ).

• Let Yi be the i.r.v representing the i th clause being satisfied.

• Y =
∑m
i=1 Yi .

• E[Y ] =
∑m
i=1E[Yi] .

• What is E[Yi] , the probability that the i th clause is true?

– The only way for a clause to be false is for all three literals to be false

– The probability a clause is false is therefore (1/2)3 = 1/8

– Probability a clause is true is therefore 1− 1/8 = 7/8 .

• Finishing, E[Yi] = 7/8 .

• E[Y ] = (7/8)m

• E[Y ] = (7/8)m ≥ (7/8)OPT (I)

Conclusion 7/8 -approximation algorithm.



Set Cover

An instance (X,F) of the set-covering problem consists of a finite set

X and a family F of subsets of X , such that every element of X belongs

to at least one subset in F :

X =
⋃
S∈F

S .

We say that a subset S ∈ F covers its elements. The problem is to

find a minimum-size subset C ⊆ F whose members cover all of X :

X =
⋃
S∈C

S



Greedy Algorithm

Greedy-Set-Cover(X,F)
1 U ← X

2 C ← ∅
3 while U 6= ∅
4 do select an S ∈ F that maximizes |S ∩ U |
5 U ← U − S
6 C ← C ∪ {S}
7 return C

Claim: If the optimal set cover has k elements, then C has at most

k log n elements.



Proof

Claim: If the optimal set cover has k sets, then C has at most k log n

sets.

Proof:

• Optimal set cover has k sets.

• One of the sets must therefore cover at least n/k of the elements.

• First greedy step must therefore choose a set that covers at least n/k

of the elements.

• After first greedy step, the number of uncovered elements is at most

n− n/k = n(1− 1/k) .



Proof continued

Iterate argument

• On remaining uncovered elements, one set in optimal must cover at least

a 1/k fraction of the remaining elements.

• So after two steps, the number of uncovered elements is at most

n

1− 1

k

2

So after j iterations, the number of uncovered elements is at most

n

1− 1

k

j ≤ ne−j/k

When j = k lnn , the numer of uncovered elements is at most

ne−j/k = ne−k lnn/k = ne− lnn = n/n = 1

.

Therefore, the algorithm stops after choosing at most k lnn sets (without

knowing k .


