Graphs

- Graph G = (V, E) has vertices (nodes) V and edges (arcs) E.
- Graph can be directed or undirected
- Graph can represent any situation with objects and pairwise relationships.

Representations

Adjacency Matrix

	1	2	3	4
1	0	1	1	1
2	1	0	0	0
3	1	0	0	1
4	1	0	1	0

Representations

Adjacency List

Comparison

	Space	Query Time	All neighbors time
Matrix	$O(V^2)$	O(1)	O(V)
\mathbf{List}	O(E)	$O(\mathbf{degree})$	$O(\mathbf{degree})$

- For a simple graph (no double edges) $E \leq V^2 = O(V^2)$
- For a connected graph $E \ge V 1$
- For a tree E = V 1

Breadth First Search

- Discover vertices in order of distance from the source.
- Works for undirected and directed graphs. Example is for undirected graphs.

Breadth First Search

```
BFS(G, s)
        for each vertex u \in V[G] - \{s\}
  1
  2
                 do color[u] \leftarrow WHITE
                      d[u] \leftarrow \infty
  3
                      \pi[u] \leftarrow \text{NIL}
  4
      color[s] \leftarrow \text{GRAY}
  \mathbf{5}
  \mathbf{6} \quad d[s] \leftarrow 0
  7 \pi[s] \leftarrow \text{NIL}
 8 Q \leftarrow \emptyset
      \operatorname{Enqueue}(Q, s)
  9
       while Q \neq \emptyset
10
                 do u \leftarrow \text{DEQUEUE}(Q)
11
                      for each v \in Adj[u]
12
                              do if color[v] = WHITE
13
                                       then color[v] \leftarrow \text{GRAY}
\mathbf{14}
                                                 d[v] \leftarrow d[u] + 1
15
16
                                                 \pi[v] \leftarrow u
                                                 ENQUEUE(Q, v)
17
                      color[u] \leftarrow \text{BLACK}
18
```

Example

Running Time:

Each edge and vertex is processed once:

O(E+V) = O(E)

Depth First Search

- More interesting than BFS
- Works for directed and undirected graphs. Example is for directed graphs.
- Time stamp nodes with discovery and finishing times.
- Lifetime: white, d(v), grey, f(v), black

Code

```
DFS(G)
    for each vertex u \in V[G]
1
            do color[u] \leftarrow WHITE
\mathbf{2}
3
                \pi[u] \leftarrow \text{NIL}
    time \leftarrow 0
4
5
    for each vertex u \in V[G]
            do if color[u] = WHITE
6
7
                    then DFS-VISIT(u)
DFS-Visit(u)
    color[u] \leftarrow \text{GRAY}
1
                                         \triangleright White vertex u has just been discovered.
2
   time \leftarrow time + 1
   d[u] \leftarrow time
3
    for each v \in Adj[u] \triangleright Explore edge (u, v).
4
            do if color[v] = WHITE
\mathbf{5}
                   then \pi[v] \leftarrow u
6
                           DFS-VISIT(v)
7
   color[u] \leftarrow \text{BLACK}
                              \triangleright Blacken u; it is finished.
8
    f[u] \leftarrow time \leftarrow time + 1
9
```

Example

Labeled

d(v)/f(v)

