
Graphs

• Graph G = (V,E) has vertices (nodes) V and edges (arcs) E.

• Graph can be directed or undirected

• Graph can represent any situation with objects and pairwise relation-

ships.





Representations



Adjacency Matrix
1 2 3 4

1 0 1 1 1

2 1 0 0 0

3 1 0 0 1

4 1 0 1 0



Representations

Adjacency List



1

2

3

4

2 3 4

1

4 1

1 3



Comparison

Space Query Time All neighbors time

Matrix O(V 2) O(1) O(V )

List O(E) O(degree) O(degree)

• For a simple graph (no double edges) E ≤ V 2 = O(V 2)

• For a connected graph E ≥ V − 1

• For a tree E = V − 1



Breadth First Search

• Discover vertices in order of distance from the source.

• Works for undirected and directed graphs. Example is for undirected

graphs.



Breadth First Search

BFS(G, s)

1 for each vertex u ∈ V [G]− {s}
2 do color [u]← white

3 d[u]←∞
4 π[u]← nil

5 color [s]← gray

6 d[s]← 0

7 π[s]← nil

8 Q← ∅
9 Enqueue(Q, s)

10 while Q 6= ∅
11 do u← Dequeue(Q)

12 for each v ∈ Adj [u]

13 do if color [v] = white

14 then color [v]← gray

15 d[v]← d[u] + 1

16 π[v]← u

17 Enqueue(Q, v)

18 color [u]← black



Example

a

b

c

d

f

e g

Running Time:

1 for each u ∈ V
2 do for each v ∈ Adj(v)

3 do Something O(1) time

Each edge and vertex is processed once:

O(E + V ) = O(E)





Depth First Search

• More interesting than BFS

• Works for directed and undirected graphs. Example is for directed

graphs.

• Time stamp nodes with discovery and finishing times.

• Lifetime: white, d(v), grey, f (v), black



Code

DFS(G)

1 for each vertex u ∈ V [G]

2 do color [u]← white

3 π[u]← nil

4 time ← 0

5 for each vertex u ∈ V [G]

6 do if color [u] = white

7 then DFS-Visit(u)

DFS-Visit(u)

1 color [u]← gray � White vertex u has just been discovered.

2 time ← time +1

3 d[u]← time

4 for each v ∈ Adj [u] � Explore edge (u, v).

5 do if color [v] = white

6 then π[v]← u

7 DFS-Visit(v)

8 color [u]← black � Blacken u; it is finished.

9 f [u]← time ← time +1



Example



Labeled

d(v)/f (v)

1/8 2/7 9/10 12/13

14/1511/163/64/5


