Efficiently Maintaining the Edge List

```
\mathbf{Discharge}(v)
    while e(v) > 0 and (v has not been relabeled)
1
\mathbf{2}
         w = current - edge(v)
         if (v, w) is admissible
3
               push(v, w)
4
          elseif (v, w) is not the last edge in v's list
\mathbf{5}
               Advance current-edge(v)
6
          else relabel(v)
\mathbf{7}
               current-edge(v) = first-edge(v)
8
```

Observations

- In one call to discharge, all pushes except possibly the last one are saturating.
- Nonsaturating pushes cause discharge to terminate
- Each time the current edge point advances through the entire list v is is relabeled.

Conclusions

- Time spent advancing pointer is proportional to time spent relabeling.
- Data structure overhead = O(nm).

FIFO Algorithm

Algorithm: Keep active vertices in a queue. Call discharge from the vertex at the head of the queue, and add newly activated vertices to the rear of the queue.

Phases

- Phase 0: vertices added during initialization
- Phase *i*: vertices added during Phase i 1.
- Claim: The number of phases is $O(n^2)$
- **Proof:** Via potential function:

 $\Phi = \max\{d(v): e(v) > 0\}$

FILL IN PROOF

Bounding the number of non-saturating pushes

- At most 1 non-saturating push per Discharge
- At most n Discharges per phase
- At most $O(n^2)$ phases

Conclusion: At most $O(n^3)$ non-saturating pushes. Total run time =

 $O(nm + n^3) = O(n^3)$

Excess Scaling

Ideas:

- $e_{\max} = \max_{v} \{ e(v) \}$.
- Only push flow from vertices with $e(v) \approx e_{\max}$.
- Gradually decrease e_{\max} .

Details:

- Δ is an upper bound on e_{\max} .
- A node with $e(v) \ge \Delta/2$ has large excess.
- A node with $e(v) < \Delta/2$ has small excess.

Invariants to maintain

- Only push flow from nodes with large excess.
- Never let $e(v) > \Delta$ for any vertex.

Node selection rule: Choose, among vertices with large excess, the one with minimum distance label.

Implication: Any push goes from a vertex of large excess to one of small excess.

Excess Scaling Algorithm

Excess Scaling Algorithm

Preprocess 1 $\Delta = 2^{\lceil lgU \rceil}$ $\mathbf{2}$ 3 while $(\Delta \ge 1)$ while some node has large excess 4 $\mathbf{5}$ Let v be the min-dist label node of large excess 6 w = current - edge(v)if push(v, w) is applicable 7 push $\delta = \min\{e(v), c_f(v, w), \Delta - e(w)\}$ units of flow on (v, w)8 elseif (v, w) is not the last edge in v's list 9 10 advance(w)else relabel(v)11 12 $\Delta = \Delta/2$ 13

Analysis

Lemma:

٠

- Each non-saturating push send at least $\Delta/2$ units of flow
- No excess ever exceeds Δ

Lemma: There are $O(n^2)$ non-saturating pushes per scaling phass. **Proof:** Use potential function

 $\Phi = \sum_{v} e(v) d(v) / \Delta$

Summary

- $O(n^2)$ relabels
- O(nm) time relabeling
- O(nm) saturating pushes
- $\lceil \lg U \rceil$ scaling phases, each does $O(n^2)$ non-saturating pushes.

Total Time: $O(nm + n^2 \lg U)$