
Efficiently Maintaining the Edge List

Discharge(v)

1 while e(v) > 0 and (v has not been relabeled)

2 w = current -edge(v)

3 if (v, w) is admissible

4 push(v, w)

5 elseif (v, w) is not the last edge in v’s list

6 Advance current -edge(v)

7 else relabel(v)

8 current -edge(v) = first -edge(v)



Observations

• In one call to discharge, all pushes except possibly the last one are

saturating.

• Nonsaturating pushes cause discharge to terminate

• Each time the current edge point advances through the entire list v is

is relabeled.

Conclusions

• Time spent advancing pointer is propotional to time spent relabeling.

• Data structure overhead = O(nm) .



FIFO Algorithm

Algorithm: Keep active vertices in a queue. Call discharge from the

vertex at the head of the queue, and add newly activated vertices to the

rear of the queue.

Phases

• Phase 0: vertices added during initialization

• Phase i: vertices added during Phase i− 1.

Claim: The number of phases is O(n2)

Proof: Via potential function:

Φ = max{d(v) : e(v) > 0}

FILL IN PROOF



Bounding the number of non-saturating pushes

• At most 1 non-saturating push per Discharge

• At most n Discharges per phase

• At most O(n2) phases

Conclusion: At most O(n3) non-saturating pushes.

Total run time =

O(nm + n3) = O(n3)



Excess Scaling

Ideas:

• emax = maxv{e(v)} .

• Only push flow from vertices with e(v) ≈ emax .

• Gradually decrease emax .

Details:

• ∆ is an upper bound on emax .

• A node with e(v) ≥ ∆/2 has large excess.

• A node with e(v) < ∆/2 has small excess.



Invariants to maintain

• Only push flow from nodes with large excess.

• Never let e(v) > ∆ for any vertex.

Node selection rule: Choose, among vertices with large excess, the one

with minimum distance label.

Implication: Any push goes from a vertex of large excess to one of small

excess.



Excess Scaling Algorithm

Excess Scaling Algorithm

1 Preprocess

2 ∆ = 2dlgUe

3 while (∆ ≥ 1)

4 while some node has large excess

5 Let v be the min-dist label node of large excess

6 w = current -edge(v)

7 if push(v, w) is applicable

8 push δ = min{e(v), cf(v, w),∆− e(w)} units of flow on (v, w)

9 elseif (v, w) is not the last edge in v’s list

10 advance(w)

11 else relabel(v )

12

13 ∆ = ∆/2



Analysis

Lemma:

• Each non-saturating push send at least ∆/2 units of flow

• No excess ever exceeds ∆

Lemma: There are O(n2) non-saturating pushes per scaling phass.

Proof: Use potential function

Φ =
∑
v
e(v)d(v)/∆

.



Summary

• O(n2) relabels

• O(nm) time relabeling

• O(nm) saturating pushes

• dlgUe scaling phases, each does O(n2) non-saturating pushes.

Total Time: O(nm + n2 lgU)


