
Minimum Spanning Trees

• G = (V,E) is an undirected graph with non-negative edge weights w : E → Z+

• We assume wlog that edge weights are distinct

• A spanning tree is a tree with V − 1 edges, i.e. a tree that connects

all the vertices.

• The total cost (weight) of a spanning tree T is defined as
∑
e∈T w(e)

• A minimum spanning tree is a tree of minimum total weight.

6 4

5

14 10

3

8

2

9

15



Minimum Spanning Trees

• G = (V,E) is an undirected graph with non-negative edge weights w : E → Z+

• We assume wlog that edge weights are distinct

• A spanning tree is a tree with V − 1 edges, i.e. a tree that connects

all the vertices.

• The total cost (weight) of a spanning tree T is defined as
∑
e∈T w(e)

• A minimum spanning tree is a tree of minimum total weight.



Greedy Property

Greedy Property: The minimum weight edge crossing a cut is in the

minimum spanning tree.

Proof Idea: Assume not, then remove an edge crossing the cut and replace

it with the minimum weight edge.

Restatement Lemma: Let G = (V,E) be an undirected graph with edge

weights w. Let A ⊆ E be a set of edges that are part of a minimum

spanning tree. Let (S, T ) be a cut with no edges from A crossing it. Then

the minimum weight edge crossing (S, T ) can be added to A.



Recall Kruskal’s algorithm

MST-Kruskal(G,w)

1 A← ∅
2 for each vertex v ∈ V [G]

3 do Make-Set(v)

4 sort the edges of E into nondecreasing order by weight w

5 for each edge (u, v) ∈ E, taken in nondecreasing order by weight

6 do if Find-Set(u) 6= Find-Set(v)

7 then A← A ∪ {(u, v)}
8 Union(u, v)

9 return A



Example

6 4

5

14 10

3

8

2

9

15



Baruvka’s Algorithm

• Repeat

– Every node picks its minimum incoming edge and adds to the span-

ning tree T

– Contract all edges in T

• How much progress is made?

• How implement an iteration?

• Total running time?



Baruvka’s Algorithm

• Repeat

– Every node picks its minimum incoming edge and adds to the span-

ning tree T

– Contract all edges in T

• How much progress is made?

• How implement an iteration?

• Total running time?

T (n,m) = T (n/2,m− n) +O(n +m)

Problem: Edges don’t decrease fast enough



Eliminating Edges

• The heaviest edge on any cycle is not in the MST.

• Let F be a forest

• Let wF (u, v) be the maximum weight of an edge on the path from u

to v in F (or ∞ if the path does not exist.

• Edge (u, v) is F-heavy if w(u, v) > wF (u, v) and F-light otherwise.

Claim: Let F be any forest, let (u, v) be any edge. If (u, v) is F-heavy,

then (u, v) is not in the MST.



Ideas

• It is good to eliminate F-heavy edges

• The MST T would let us eliminate all non-MST edges.

• What can an F that is not an MST eliminate

Fact to accept without proof: Given G and a forrest F , we can eliminate

all F -heavy edges in O(n +m) time (spanning tree verification).



Algorithm MST (G)

1. Run 3 Bruvka phases to get G′ . Let C be the contracted edges.

2. Let G′′ be G′ with each edge included with prob. 1/2 .

3. Recursively compute F ′′ = MST (G′′) .

4. Identify the F”-heavy edges in G′ . Delete them to obtain G′′′ .

5. Recursively compute F ′′′ = MST (G′′′)

6. Return F ′′′ ∪ C

Note: The recursion bottons out on a graph with O(1) nodes.

Key Lemma: Let H be a subgraph of G where each edge is included

with probability p . Let F be a Minimum Spanning Forest of H . Then

the expected number of F-light edges in G is at most n/p .

Recurrence T (n,m) ≤ O(n +m) + T (n/8,m/2) + T (n/8, n/4) = O(n +m)


