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Second constraint.  Subtour elimination constraint. Any subset of &k

vertices must have at most © — 1 edges contained in that subset.
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IP formulation

minimize Z CijTij;
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subject to > x;; =n-—1
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e This is an exponential-sized IP. One can imagine that it is not a great
idea to write down and solve this directly.

e One can formulate the LP relaxation:
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LP relaxation

minimize Z CijTij;

ij€EE
subject to > x;; =n-—1
ij€E
1jelies jes

® 7;; <1 constraints implied by two vertex sets S .
e Still exponential and not an efficient directly solution method.

e One can show that the MST is an optimal solution to the relaxation
(proof omitted). That is, the LP has integer extreme points.

e Similar formulation is used in many harder problems, e.g. TSP, Steiner
Tree.



Other Formulations

Cut Formulation For every cut, at least one edge must cross the cut. For
asubset SCV ,let §(5) be the edges crossing the cut (one endpoint in
S,onein V — 5.

minimize ). c¢;;;;

ijeE
subject to Y} z;; =n—1
ijEE
ijEE:FEI(S)
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e Also exponential, also useful in other problems.

e For the LP relaxation, there may be fractional extreme points.



