
Prediction with Expert Advice

Set up

• N experts

• T time periods, in each time period t ≤ T ,

– Each expert i makes a 0, 1 prediction E ti .

– We, after viewing the vector E t , make a prediction pt .

– We learn the true outcome ot .

• The objective is to minimize the number of mistakes,
∑T
t=1 |pt − ot|

How do we evaluate how well we did?



Prediction with Expert Advice

Set up

• N experts

• T time periods, in each time period t ≤ T ,

– Each expert i makes a 0, 1 prediction E ti .

– We, after viewing the vector E t , make a prediction pt .

– We learn the true outcome ot .

• The objective is to minimize the number of mistakes, M =
∑T
t=1 |pt − ot|

How do evaluate how well we did?

• We will assume that the experts predictions are chosen adversarily

• We will compare ourselve to the best expert, in retrospect (regret),

mini
∑
t |ot − E ti |



First evaluations

Perfect expert: If there is a perfect expert, then there is an algorithm

which makes at most log2N mistakes.

Proof idea: The algorithm is to take the majority vote of the experts who

have never made an error yet.

Imperfect expert: If the best expert makes m mistakes, then there is an

algorithm making at most

m(log2N + 1) + log2N

mistakes.

Proof idea: Divide time into epochs and use the previous algorithm,

restarting an epoch as soon as every expert has made at least one error

during that epoch.

Can we do better?



Weighted Majority Algorithm

1. Assign a weight wi to each expert i . Initialize wi = 1 .

2. At time t ,

• Predict according to the weighted majority (compare the weights of

the 0 experts vs. the 1 experts)

• For each expert i who made a mistake, wt+1
i = (1/2)wt

i

Theorem: If mi is the number of mistakes made by expert i before time

T , and M is the number of mistakes made by the algorithm, then

M ≤ 2.41(mi + log2N).



Weighted Majority Algorithm

1. Assign a weight wi to each expert i . Initialize wi = 1 .

2. At time t ,

• Predict according to the weighted majority (compare the weights of

the 0 experts vs. the 1 experts)

• For each expert i who made a mistake, wt+1
i = (1/2)wt

i

Theorem: If mi is the number of mistakes made by expert i before time

T , and M is the number of mistakes made by the algorithm, then

M ≤ 2.41(mi + log2N).

Corollary: If we multiply weights by 1− ε instead of 1/2 when there is

a mistake, we get a bound of

M ≤ 2(1 + ε)mi +
O(log2N)

ε
.

Remark: Can’t go below 2 with deterministic algorithms, but can consider

randomized ones.



Randomized Multiplicative Weights

Recall Φt =
∑
iw

t
i.

Define

P0 =

∑
i:Eti=0w

t
i

Φt
P1 =

∑
i:Eti=1w

t
i

Φt

Algorithm

1. Assign a weight wi to each expert i . Initialize wi = 1 .

2. At time t ,

• Predict according to the randomized weighted majority. Predict 0

with probability P0 and 1 with probability P1 .

• For each expert i who made a mistake, wt+1
i = (1− ε)wt

i

Theorem: Given any ε > 0 , if mi is the number of mistakes made by

expert i before time T , and q is the number of mistakes made by the

algorithm, then

E[M ] ≤ (1 + ε)mi +
O(log2N)

ε



Remarks

• The regret is the difference between the algorith and the best expert

in retrospect, and is εmi + O(log2N)
ε .

• Need to be careful about the adversary with a randomized algorithm:

– An oblivious adversary has to choose the entire sequence E1, o1, E2, o2, . . .
in advance.

– An adpative adversary can choose E t and ot , knowing

E1, o1, E2, o2, . . . , cet−1, ot−1 .



A more general situation

• At each step, we choose a “probability vector” pt = (pt1, . . . , p
t
N) , with

pti ≥ 0,
∑
i p

t
i = 1 .

• At each step the adversary produced a loss vector, lt = (lt1, . . . , l
t
N) ∈ [−1, 1]N

.

• Our cost (loss) at step t is Lt = 〈pt, lt〉 , where we use 〈·, ·〉 to denote

the inner product of 2 vectors.

• We compare our algorithm against the best static strategy.

• Note that our algorithm is not necessarily randomized.

Algorithm Hedge:

• Maintain Multiplicative Weights updated with rule wt+1
i = wt

ie
−εlti .

• Let Φt =
∑
iw

t
i .

• Set probabilities, pti = wt
i/Φt .

Theorem: Let ε ≤ 1 . For all times T , all sequences of loss vectors

l1, . . . , lT , and all i , algorithm Hedge is a deterministic algorithm s.t.

T∑
t=1

Lt ≤
T∑
t=1

lti + εT + lnN/ε



Corollary

Theorem: Let ε ≤ 1 . For all times T , all sequences of loss vectors l1, . . . , lT

, and all i , algorithm Hedge is a deterministic algorithm produceing a

probability vector s.t.

T∑
t=1

Lt ≤
T∑
t=1

lti + εT + lnN/ε

Corollary A: If T ≥ 4 lnN/ε2 , then
∑T
t=1L

t

T
≤

∑T
t=1 l

t
i

T
+ ε

• We can scale our loss vectors to be in [−ρ, ρ]N .

Corollary B:

Let ε ≤ 1 . For all times T ≥ 4 lnNρ2/ε2 , all sequences of loss vectors

l1, . . . , lT ∈ [−ρ, ρ]N , and all i , algorithm Hedge is a deterministic algorithm

produceing a probability vector s.t.∑T
t=1L

t

T
≤

∑T
t=1 l

t
i

T
+ ε



Approximately Solving Packing LPs

Problem:

min〈c, x〉

Ax ≥ b x ≥ 0

• In a packing LP, A, b, c are all non-negative.

• We will assume that we know OPT, the optimal solution to the LP. We

can use binary search to know OPT up to some accuracy.

• Let K = {x ∈ Rn : x ≥ 0, 〈c, x〉 = OPT} be the set of optimal solutions.

Restatement of approximate solution to LP:

Find an x ∈ K s.t. 〈ai, x〉 ≥ bi − ε ∀i = 1, . . . ,m



Oracles

Warmup Lemma: Given a single constraint 〈α, x〉 ≥ β , there exists a fast

oracle to find x ∈ K s.t. 〈α, x〉 ≥ β or to say that none exists.

Oracle: We will assume that we have an Oracle that allows us to opti-

mize quickly over the easy constraints, find a solution in K that satsifies

some easy constraints. As we have seen, we can optimize over one con-

straint. We can also optimize over “nice” constraints, such as shortest path

constraints..

Strategy for Approximately Solving LP

• Use Hedge to update weights on constraints.

• Use the Oracle to produce a solution to a convex combination of the

constraints

• Update weights depending on how badly constraints are violated.

• Repeat.

Width: ρ = maxx∈K,i{|〈ai, x〉 − bi} is the maximum possible violation of a

constraint by a feasible solution and will affect the running time.



Algorithm A

1. p1 = (1/m, . . . , 1/m)

2. For t = 1 to ρ2 lnm/ε2

(a) Use the ORACLE to either find an xt s.t.
∑m
i=1〈ptiai, xt〉 ≥

∑m
i=1 p

t
ibi or

return infeasible

(b) lti = 〈ai, xt〉 − bi
(c) Call HEDGE(ε) to update pt+1

3. Return x̂ = (x1 + · · · + xT )/T

• If the algorithm ever returns infeasible, then the original problems is

infeasible (because feasible problems always can satsify a convex com-

bination of the constraints).

• The ORACLE is just a one constraint LP.

• If you think about the solution as T grows, you see that it is gradually

approaching a feasible solution, by putting more weights on unsatisfied

constraints.



Analysis

Outline Consider Corollary B that applies to Hedge. After T = ρ2 lnm/ε2

rounds of Hedge, ∑T
t=1〈pt, lt〉
T

≤
∑T
t=1 l

t
i

T
+ ε

.

• We will show that the left hand side is non-negative.

• We will show that the right hand side is bound by aix̂− bi + ε .

• We will conclude that aix̂ ≥ bi − ε which implies approximate feasibliity.



Multicommodity Flow

Consider the maximization version of multicommodity flow. You can

express it (inefficiently) as being given a set of paths P , and you have to

put flow on the paths fp , subject to capacity constraints on the edges.

max
∑
p∈P

fp
∑
p3e

fp ≤ ue ∀e ∈ E

fp ≥ 0 ∀p ∈ P

• Let F ∗ be the amount of flow in the optimal solution. We now have

the problem

∃p ∈ P : ∀e ∈ E :
∑
p3e

fp ≤ ue,

where

P =

f : ∀p ∈ P : fp ≥ 0,
∑
p∈P

fp = F ∗
 .

• What does multiplicative weights look like for this packing problem?



Multiplicative Weights for Multicommodity Flow

• Maintain edge weights wt
e

• Find flow which minimizes:

∑
e
wt
e

∑
p3e

fp/ue =
∑
p
fp

∑
e∈p

wt
e/ue

• This is a shortest path problem where edge e has length wt
e/ue .

• Each iteration picks a path which is shortest, and puts F ∗ flow on that

path.

• Final flow is an average of all the paths and hence is a flow of value F ∗

.

• Width is not polynomial.

ρ = max
f∈P

max
e

∑
p3e

fp/ue = F ∗/umin

• Each iteration is a shortest path but algorithm is not polynomial



Ideas for a Polynomial Algorithm

• Reduce width by only considering feasible flows and not flows of value

F ∗ , which immediately reduces width.

• Send an amount of flow on path p determined by minimum capacity

edge on path p .

• Update weights only on path with flow sent on it.

• Stop when an edge gets too much congestion.

• Running time is O(ε−2m log nTsp) where Tsp is the time for a shortest

path computation.


