Shortest Paths

e Input: weighted, directed graph G = (V, F), with weight function w :
E — R.

e The weight of path p =< vy, v1,...,v, > is the sum of the weights of its
constituent edges:

k
w(p) = Z:lw(vi—lavi) :
e The shortest-path weight from u to v is

d(u,v) ={

min{w(p)} if there is a path p from u to v ,
00 otherwise .

e A shortest path from vertex u to vertex v is then defined as any path
p with weight w(p) = d(u, v).

To do:
e Quickly Review Basics
e Talk About Data Structures for Dijkstra

e Talk About Some Details in Implementation

Shortest Paths

Key Property: Subpaths of shortest paths are shortest paths Given a
weighted, directed graph G = (V. E) with weight function w : £ — R, let
p =< v1,V9,...,U; > be a shortest path from vertex v; to vertex v, and, for
any ¢ and j such that 1 <: <j <k, let p;; =< v;,vi11,...,v; > be the subpath
of p from vertex v; to vertex v;. Then, p;; is a shortest path from v; to v;.

Note: this is optimal substructure

Corollary 1 For all edges (u,v) € E,
d(v) < 6(u) +wu,v)

Corollary 2 Shortest paths follow a tree of edges for which
d(v) = d(u) + w(u,v)
More precisely, any edge in a shortest path must satisfy

d(v) =0(u) +w(u,v)

Relaxation

Relax(u, v, w)

1 if djv] > du] + w(u,v)

2 then d[v] « d[u] + w(u,v)

3 7[v] < u (keep track of actual path)

Lemma: Assume that we initialize all d(v) to oo, d(s) = 0 and execute a
series of Relax operations. Then for all v, d(v) > §(v).

Lemma: Let P =e,...,e; be a shortest path from s to v. After initial-
ization, suppose that we relax the edges of P in order (but not necessarily
consecutively). Then d(v) = §(v).

Algorithms

Goal of an algorithm: Relax the edges in a shortest path in order (but
not necessarily consecutively).

Algorithms

Goal of an algorithm: Relax the edges in a shortest path in order (but
not necessarily consecutively).

Bellman-Ford(G, w, s)

1
2
3
4
5]
6
7
8

INITIALIZE-SINGLE-SOURCE(G, $)
for 1 + 1 to |V[G]| — 1
do for each edge (u,v) € E|G]

do RELAX(u, v, w)

for each edge (u,v) € E|G]
do if d[v] > d[u] + w(u,v)

then return FALSE

return TRUE

Initialize — Single — Source(G, s)

- W N =

for each vertex v € V|G|
do d[v] < oo

d[s] < 0

T|v] <= NIL

Correctness of Bellman Ford

e Every shortest path must be relaxed in order

e If there are negative weight cycles, the algorithm will return false

Running Time O(VE)

All edges non-negative

e Dijkstra’s algorithm, a greedy algorithm

e Can relax edges out of each vertex exactly once.

Dijkstra(G,w, s)
INITIALIZE-SINGLE-SOURCE(G, s)
S0
for each vertex v € V
do INSERT(Q,V)
while Q) # ()
do u < EXTRACT-MIN(Q)
S+ SU{u}
for each vertex v € Adj[ul
do RELAX(u, v, w)
if relax changed d(v)
then DECREASE-KEY (v, d(v))

© 00O Uik W N =

-
- O

Running Time and Correctness

Correctness of Dijkstra’s algorithm Dijkstra’s algorithm, run on a weighted,
directed graph G = (V, F) with nonnegative weight function w and source
s, terminates with d[u| = (s, u) for all vertices u € V.

e [/ decrease keys and V delete-min’s
e O(ElogV) using a heap
e O(F + VlogV) using a Fibonacci heap

Question: What can we do when the weights come from a restricted
range?

