
Shortest Paths

• Input: weighted, directed graph G = (V,E), with weight function w :

E → R.

• The weight of path p =< v0, v1, . . . , vk > is the sum of the weights of its

constituent edges:

w(p) =
k∑
i=1
w(vi−1, vi) .

• The shortest-path weight from u to v is

δ(u, v) = { min{w(p)} if there is a path p from u to v ,

∞ otherwise .

• A shortest path from vertex u to vertex v is then defined as any path

p with weight w(p) = δ(u, v).

To do:

• Quickly Review Basics

• Talk About Data Structures for Dijkstra

• Talk About Some Details in Implementation

Shortest Paths

Key Property: Subpaths of shortest paths are shortest paths Given a

weighted, directed graph G = (V,E) with weight function w : E → R, let

p =< v1, v2, . . . , vk > be a shortest path from vertex v1 to vertex vk and, for

any i and j such that 1 ≤ i ≤ j ≤ k, let pij =< vi, vi+1, . . . , vj > be the subpath

of p from vertex vi to vertex vj. Then, pij is a shortest path from vi to vj.

Note: this is optimal substructure

Corollary 1 For all edges (u, v) ∈ E,

δ(v) ≤ δ(u) + w(u, v)

Corollary 2 Shortest paths follow a tree of edges for which

δ(v) = δ(u) + w(u, v)

More precisely, any edge in a shortest path must satisfy

δ(v) = δ(u) + w(u, v)

Relaxation

Relax(u, v, w)

1 if d[v] > d[u] + w(u, v)

2 then d[v]← d[u] + w(u, v)

3 π[v]← u (keep track of actual path)

Lemma: Assume that we initialize all d(v) to ∞, d(s) = 0 and execute a

series of Relax operations. Then for all v, d(v) ≥ δ(v).

Lemma: Let P = e1, . . . , ek be a shortest path from s to v. After initial-

ization, suppose that we relax the edges of P in order (but not necessarily

consecutively). Then d(v) = δ(v).

Algorithms

Goal of an algorithm: Relax the edges in a shortest path in order (but

not necessarily consecutively).

Algorithms

Goal of an algorithm: Relax the edges in a shortest path in order (but

not necessarily consecutively).

Bellman-Ford(G,w, s)

1 Initialize-Single-Source(G, s)

2 for i← 1 to |V [G]| − 1

3 do for each edge (u, v) ∈ E[G]
4 do Relax(u, v, w)

5 for each edge (u, v) ∈ E[G]
6 do if d[v] > d[u] + w(u, v)

7 then return false

8 return true

Initialize− Single− Source(G, s)
1 for each vertex v ∈ V [G]

2 do d[v]←∞
3 π[v]← nil

4 d[s]← 0

Example

s

a b

c d

2

6

−8

3

5

5

6 4

e
−1

Correctness of Bellman Ford

• Every shortest path must be relaxed in order

• If there are negative weight cycles, the algorithm will return false

Running Time O(V E)

All edges non-negative

• Dijkstra’s algorithm, a greedy algorithm

• Can relax edges out of each vertex exactly once.

Dijkstra(G,w, s)

1 Initialize-Single-Source(G, s)

2 S ← ∅
3 for each vertex v ∈ V
4 do Insert(Q,v)

5 while Q 6= ∅
6 do u← Extract-Min(Q)

7 S ← S ∪ {u}
8 for each vertex v ∈ Adj [u]

9 do Relax(u, v, w)

10 if relax changed d(v)

11 then Decrease-Key(v, d(v))

Running Time and Correctness

Correctness of Dijkstra’s algorithm Dijkstra’s algorithm, run on a weighted,

directed graph G = (V,E) with nonnegative weight function w and source

s, terminates with d[u] = δ(s, u) for all vertices u ∈ V .

• E decrease keys and V delete-min’s

• O(E log V) using a heap

• O(E + V log V) using a Fibonacci heap

Question: What can we do when the weights come from a restricted

range?

