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CONSTRUCTING A PERFECT MATCHING IS
IN RANDOM NC

R. M. KARP!, E. UPFAL? and A. WIGDERSON1t
Received 15 April 1985

We show that the problem of constructing a perfect matching in a graph is in the complexity
class Random NC; i.e., the problem is solvable in polylog time by a randomized parallel algorithm
using a polynomial-bounded number of processors. We also show that several related problems
lie in Random NC. These include:

(i) Constructing a perfect matching of maximum weight in a graph whose edge weights are
given in unary notation;

(ii) Constructing a maximum-cardinality matching;
(iii) Constructing a matching covering a set of vertices of maximum weight in a graph whose
vertex weights are given in binary;
(iv) Constructing a maximum s—t flow in a directed graph whose edge weights are given in
unary.

1. Introduction

In this paper we show that the problem of constructing a perfect matching
in a graph is in the complexity class Random NCj i.e., the problem is solvable in
polylog time by a randomized parallel algorithm using a polynomial-bounded num-
ber of processors. We also show that several related problems lie in Random NC.
These include:

(i) Constructing a perfect matching of maximum weight in a graph whose edge
weights are given in unary notation;

(i)  Constructing a maximum-cardinality matching;
(i) Constructing a matching covering a set of vertices of maximum weight in
a graph whose vertex weights are given in binary;
(tv)  Constructing a maximum s—¢ flow in a directed graph whose edge weights
are given in unary.

Our results are based on a theorem of Tutte [15] showing that a graph has
a perfect matching if and only if the determinant of a certain skew-symmetric matrix
with indeterminates as elements is not identically zero. Around 1979 Lovasz [11]
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suggested that Tutte’s Theorem, combined with a fundamental randomized tech-
nique for testing whether a matrix with polynomial entries has a nonzero deter-
minant [13], provides a simple polynomial-time randomized algorithm for testing
whether a graph has a perfect matching. In 1982 Borodin, von zur Gathen and
Hopcroft [3] observed that, since the problem of computing the determinant of a
numerical matrix lies in NC, a parallel algorithm can be constructed based on Lovasz’s
approach. This algorithm establishes that the problem of deciding whether a graph
contains a perfect matching lies in the complexity class Random NC, but leaves
open the question of whether a parallel algorithm of comparable efficiency exists
for constructing a perfect matching in a graph that is known to have such a matching.
In 1984 Rabin and Vazirani [12], using clever algebraic techniques related to Tutte’s
Theorem, gave an attractive randomized polynomial-time sequential algorithm for
constructing a maximum matching. They also observed that if a graph has a unique

ing a perfect matching in an interval graph was shown to be in Random-NC by
Kozen, Vazirani and Vazirani [10].

The additional ingredient that allowed us to obtain a Random-NC parallel
algorithm for constructing a perfect matching in an arbitrary graph was the intro-
duction of a useful set function called Rank. Our result is based on a Random-NC
reduction of the matching problem to the problem of computing the Rank function,
and on a Random-NC algorithm for computing the Rank of sets.

2. The perfect matching algorithm

We present the perfect matching algorithm in three stages. First we reduce
the problem of finding a perfect matching to the problem of identifying a large set
of redundant edges in a graph that has a perfect matching and is not very sparse.
We say that a set of edges in a graph that has a perfect matching is redundant if
the removal of these edges results in a graph that still has a perfect matching. We
then show that a random-NC procedure can construct a large set of redundant
edges provided that a certain integer-valued function, called the rank, which is
defined over all subsets of edges in the graph, is computable in random-NC. Finally
we give a random-NC algorithm for computing the rank function.

2.1. A high level description of the algorithm

Let IG=(IV,IE) denote the input graph. The procedure Find-Perfect-
Matching uses three main variables M, V and F.

The set variable M collects the edges that the procedure designates for the
output matching. In contrast with the classical matching algorithms, our procedure
never retreats from partial solutions. Once an edge is added to the set M it remains
there until the procedure terminates, and it appears in the final output.

Throughout the execution of the procedure the variable V stores the set of
vertices that are not yet covered by the matching M. The set E stores a subset of the
set of edges connecting vertices in V; these are the edges that are still candidates
for inclusion in the matching.
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We start the procedure with M=0, V=1V, and E=IE. If the input graph
IG has a perfect matching then with probability 1—o(1) the following property
holds throughout the execution of the procedure:

The graph G=(V, E) has a perfect matching.

If this condition is ever violated the procedure will fail to produce a perfect matching
in IG. On the other hand, if the condition remains true then it suffices for the algo-
rithm to consider edges in the set E, since the set M together with a perfect matching
in G is clearly a perfect matching in the input graph IG.

Procedure Find-Perfect-Matching (¥, E, M);
while [E[=0 do
if |E|<(3/4)| V| then [G is sparse]
find a set NM, |[NM|[=(1/4)| V], of edges that lie in every perfect matching;
M~MUNM;
V + V— {vertices covered by NM};
E~{(v, w)|(v, w)EE, v,ucV};
else [G is not sparse]
Find-Redundant-Set(RE);
[with probability =0, |RE|=«|E]]
E<~FE—RE;
end.

The main while loop of the procedure is executed until the set E is empty.
Assuming that the graph (¥, E) always has perfect matching, this implies that the
set V' is also empty, thus, that the variable M stores a perfect matching in IG.

Each iteration of the while loop tries to decrease the size of the set E by a
constant factor. The execution distinguishes between two cases:

Case a. |E|<(3/4)|V], (the graph G=(V, E) is sparse). Since G has a per-
fect matching, the degrees of all its vertices are at least 1. However, [E|<(3/4)|V],
thus at least (1/2)| V| vertices have degree exactly 1. If an edge is incident to a vertex
with degree 1 this edge is included in any perfect matching in this graph. Thus we
can identify at least (1/4){V| edges that can be added to the set M and the remaining
graph (V”, E’), defined by the vertices in V that are not covered by the new matching
edges, has a perfect matching. Furthermore, |E’|=|E|—(1/9)V|=(2/3)|E|, and
the computation can be done in O(1) steps using O(|E|) processors.

Case b. |E|=(3/4)|V|. This case, which is the novel part of the algorithm,
is solved by the probabilistic procedure Find-Redundant-Set. With probability
1-0(1/]E|* the procedure produces a set RE such that the graph (V, E—RE)
has a perfect matching. With probability f=>0, |[RE|=o|E| for some a>0. Thus
with probability =0 the procedure reduces the size of our problem by a constant
factor.

The analysis of the number of iterations of the while loop required to create
a perfect matching requires a fact from probability theory.

Fact 1. [1] Let X be a random variable distributed as the number of successes in n
independent Bernoulli trials with probability of success p. If O<a=<1 then P{X=
=(1—a) np]<exp(—1/2a%np). |
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Lemma 2.1. If there are constants o, B=>0 such that with probability at least B a call
to the procedure Find-Redundant-Set identifies at least a fraction o of the edges
in E as redundant, then, uniformly for all problem instances, the expected number
of iterations of the while loop within this procedure is O(log E), and, moreover, for
some c¢=0 and d=0 the number of iterations of the while loop is bounded above by
dlog E with probability 1—O(E™°).

Proof. We may assume without loss of generality that a=1/3. Call an iteration
of the while loop a success if it disposes of at least «|E| edges, either by determining
that they lie in every perfect matching (Case a) or determining that they are redun-
dant (Case b). Then every iteration in which Case a occurs is necessarily a success,
and every iteration in which Case b occurs is a success with probability at least B.
Let 7=(1—a)~1. The number of successes required to reduce the number of edges
to 1, starting from an initial edge set E, is at most log, |E|, and hence the number
of successes required to complete the entire computation is at most 1-+log, |E]|.
Since each iteration has probability of success at least f, independently of the out-
comes of all previous iterations, the expected number of iterations is at most
B~(1+log, |E|). Moreover, the number of successes in the first 2~ 'log, |E|
iterations is a random variable that stochastically dominates the number of successes
in 28~ log, |E| independent Bornoulli trials with probability of success B. Applying
Fact 1, we find that the probability of having log, |E| or fewer successes in the
first 28~ 'log, |E| iterations is at most exp(—(1/8)log,|E[)=|E|~¢, where c=
=(81In#n)~1=0. Hence, with probability 1—|E|~° procedure Find-Perfect-
Matching terminates within 28~ log, |E| iterations.

As we have mentioned before, the probability that a call to the procedure
Find-Perfect-Matching fails to find a perfect matching is o(1). Since this bound
on the failure probability is independent of the input, and sice we can check at the
end of the procedure whether M is a perfect matching, we can simply repeat the
procedure until a perfect matching is found. This leads to the following randomized
algorithm, which finds a perfect matching in polylog expected time in any graph
in which such a matching exists.

Perfect Matching Algorithm

M~<0;
while |M|<|IV]/2
V<1V,
E<~IE;
M<0
Find-Perfect-Matching (V, E, M);
end.
2.2. Identifying a large set of redundant edges
Given a graph G=(V, E) such that
1. G has a perfect matching,
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2. E=3/4|V,
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we need to find a set RESE such that
1. |RE|=«olE| for some a=0
and
2. (V,E—RE) has a perfect matching.

Our algorithm uses a powerful integer-valued function defined over all sub-
sets of edges in G.

Definition 2.1. Let PM denote the set of perfect matchings in the graph G. For any
set SCE define

Rank (S) = M% ISMA.

In words Rank(S) is an integer giving the maximum number of edges from
S that occur together in a perfect matching of G.
We use the Rank function in the following way.

Lemma 2.2. For a fixed SSE, let RE={ecE— SIRank(SU{e}) Rank(S)}. If
G=(V, E) has a perfect matching then so does G'=(V, E

Proof. If Rank(S)=*k then there is a perfect matching A in G such that ISOAI

If Rank(SU {e})=Rank(S) then (SU{e})N4=SN4 and e is not in 4. ThlS
argument holds simultaneously for all the edges in RE; therefore removing the set
RE leaves the graph with at least one perfect matching, the set 4. |

Example. Suppose the graph G is a cycle consisting of the successive edges 1, 2, 3,
4,5,6. Then PM consists of the two sets {1, 3, 5} and {2, 4, 6}. Hence, for any set S
Consider the set S= {1 2,3}. Then
Rank(S) 2 and RE= {4 6} Note that the deletion of edges 4 and 6 does not
destroy the perfect matching {1, 3, 5}.

To guarantee a uniform lower bound on the probability that the set RE is
large enough, we use the following procedure:

Procedure Find-Redundant-Set;

begin
choose a random number i from the uniform distribution over the range
{1, ..., 5/6|El};
choose a SSE from the uniform distribution over the i—element subsets
of E;
RE « {e€ E—S|Rank(SU {e})=Rank(S)}

end.

Lemma 2.3. There are constants «, >0 such that Prob {|RE|=u«|E|}=p.

Proof. Let |V|=n, |[E|=m, and let p; denote the probability that for a set § drawn
at random from the i—element subsets of E, and for an edge drawn at random from
E—S, Rank(SU {e}) Rank(S)+1.

We can think of a random set S as being constructed by a sequence of i ran-
dom choices (without repetitions) from the set £. Rank (S) is then equal to the num-
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..y U}, the vertex set of the other part. Associate with each edge {u;, v;} an in-
determinate x;;, and let B=(b;;) be an nXn matrix of indeterminates defined by
if {u,v}€E

the following rule:
by = {x"'
Y7l if {u, 0}4E

Edmonds [5] has observed that G has a perfect matching if and only if det(B)#

#0. This is true because each of the n! terms in the sum
SZS' sign (6)11b; ;)

is a product of n entries in B that correspond to the edges of one of the n! perfect
matchings in the complete bipartite graph. If all the edges of a perfect matching
exist in G than the corresponding term in det(B) is not identically zero; otherwise
one of the entries is zero and IIb; ,;,=0. It is easy to verify that monomials can
not cancel each other in this summation, and therefore det(B)z0 if and only
if G has a perfect matching.

To compute the Rank of a given set S€E we refine this argument. Define
the matrix B[S]=(}5;) as follows:

yxy; if  {u;, v}€S
b'SJ = x,j if {uia UJ}EE_S
0 if {u,n)4E.

Le. B[.S] is derived from the matrix B by tagging all entries that correspond to edges
in S with a new variable y.

Each non-zero monomial in det(B[S]) corresponds to a perfect matching
in G. The degree in y of a monomial is equal to the number of elements from § that
participate in the corresponding perfect matching. Again monomials can not cancel
each other, hence the degree in y of det(B[S]) is equal to that of the monomial with
the maximum degree in y, which in turn is equal to the maximum number of elements
from S that participate in a perfect matching in G, i.e., to Rank(S).

So in order to compute Rank(S) we have to compute the degree in y of the
multivariate polynomial det(B[S]). Rewriting det(B[S]) as a polynomial in y, we get

det (BIS]) = 2 0.[xi)]7"

and Rank(S)=Max{f|Q,=0}. Unfortunately, we can not test directly whether
0,, which is a polynomial in up to |E| indeterminates, is identically zero. Instead,
we use a well-known probabilistic method.

Theorem 2.1. (Schwartz) [13] Let O, denote the value of the polynomial Q, when
each indeterminate in QO is replaced by a random integer in the range 1, ...,J.
If Q.20 then Prob{Q,=0}=|El/J. ||

Let B[S] denote the matrix B[S] after all its indeterminates, except y, have
been replaced by random integers. To compute the Q,’s we have to compute det(B[S])
as a polynomial in one variable y.
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Theorem 2.2. (Borodin, Cook, Pippenger) [2]. The determinant of an nXn matrix
of polynomials with a constant number of variables and the degree of each matrix
element bounded by n can be computed in O(log® n) steps using O(n*®) processors.

We can now summarize the algorithm for computing the Rank function in
the bipartite case.

Procedure Rank(S);
begin
construct the matrix B[S]=[b];
replace each indeterminate x;; by a random integer in the range 1, ..., [IE[*;
compute det(B[S))=> 0,)%;
~ t
Rank (S)=Max {f|J,=0};
end.

In the case of a general graph our method of computing the rank function
relies on the following theorem of Tutte.

Theorem 2.3. (Tutte) [15]. Let G=(V, E) denote a general graph with vertex set
V={1,2,...,n} and define the skew-symmetric matrix B=(b;;) as follows:
x; if {i,j}€E and i<j
b =1—x; if {i,j}€E and i>j
0 if {i,j}4E.
Then G has a perfect if and only if det(B)=0. J

Tutte’s theorem can be extended to yield an algorithm for computing the
Rank function in general graphs.

Theorem 2.4. Let G=(V,E), S S E, and define the matrix B[S]=[bf;] as follows:

{i,j}es and
{i,j}es and
{i,j}eE-S and
—x; if {i,j/}¢E-S and
0 if {i,j}4E.
Then Rank(S) is equal to half of the degree in y of det(B[S])).
Proof. Let P be the set of all permutations ¢ of {1,2, ..., n} such that, for all j,
bi..(n#0. We classify these permutations according to their cycle structures. Since
all elements on the main diagonal are 0, no permutation in P contains a cycle of
length 1. Let OP be the set of all permutations in P which contain at least one odd
cycle and let EP be the set of all permutations in S in which all cycles are of even
Iength. Then P is the disjoint union of OP and EP. Let M be the set of all permuta-
tions in P such that every cycle is of length 2. Then M & EP, and the permutations
in M are in one-to-one correspondence with the perfect matchings in G.

We have
det (B[S]) = > sign (o) I,] b, o0y

gEP

yxy if
—yxy; if

i<j
i>j
i<j
i>j
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. The determinant of an nXn matrix = We shall show that the contribution of the permutations containing odd cycles to
riables and the degree of each marrix det (B[S)) is equal to zero; i.e., that

log? n) steps using O(n*°) processors.
. . . ‘ i b a(i) = 0.
1 for computing the Rank function in | ,,EZO,P sign (o) ],I o (i)

We shall partition the permutations containing odd cycles into pairs, such that the
two permutations in each pair make a net contribution of zero to the determinant.
Let o be a permutation containing at least one odd cycle. Let i be the least element
. of {1,2, ..., n} occurring in an odd cycle of ¢, and let C be the odd cycle containing i.
 integer in the range 1, ..., |IE]*; Then o is paired with a permutation & which is the same as ¢ except that the cycle
y  Cis reversed. Thus & is defined as follows: if j¢ C then &(j)=0(j); if j€eC then
d(j)=0"1(j). It is easy to verify that this rule partitions OP into pairs, and that
each pair makes a net contribution of zero to the determinant.

Call an ordered pair (i,j) an S—pair if {i,j} is an edge in S. Then the
thod of computing the rank function S—pairs correspond to the entries in the matrix B[S] which involve variable y.
Associated with each permutation ¢ in EP is the term sign (6) [ b; ,;. This term

i

enote a general graph with vertex set | 1S a nonzero monomial in the variables {x; ;1 and y. Define the y—degree of ¢ as the
¢ matrix B=(b,;) as follows: ‘ fiegree of y in this monomial. Then the y—degree of ¢ is just the number of S—pairs
o y In g, ie. the number of S—pairs {i, o (i)).

€E and i<]j j We shall show that, for every permutation o€EP there exists a permutation
€FE and i>j €M such that the y—degree of 1 is greater than or equal to the y—degree of o.
¢E. - To construct 7, partition the pairs (i, 6(i)), i=1,2,...,n into two sets, called the
0. 1 - 0dd pairs and the even pairs, in such a way that, (i, ¢(i)) is an odd pair if and only

: - if {a(d), 6(6(?))) is an even pair. In other words, the partition is chosen so that,
jield an algorithm for computing the ' in the traversal of any cycle of o, odd pairs and even pairs alternate. Such a partition

is possible because all the cycles in ¢ are even. Assume without loss of generality
. that the set of odd pairs in ¢ contains at least as many S—pairs as does the set of
he matrix B[S]= [b;] as follows: even pairs in ¢. If the y—degree of ¢ is d, then the set of odd pairs contains at least
3 and i< j dj2 S—pairs. Now define 7 by the following rule: if (i, 6(i)) is an odd pair then

1(()=0(i) and 7(o(i))=4i. Then 7 lies in M and the y—degree of t is at least d.

> and l >J_ Each permutation in M corresponds to a perfect matching in G, and the y—
E—=S and i<j degree of this permutation is twice the number of edges from S in this perfect match-
F—S and i=>j ©ing. Hence, using the result proven in the last paragraph, the maximum y—degree
E, , of any permutation is just twice the rank of S. To show that the degree of y in
n y of det(BIS]) ' det(B[S]) is twice the rank of S, we need to show that the permutations of maximum
: y—degree make a nonzero net contribution to det (B[S]). But this is clear, since
o of {1,2,...,n} such that, for all j, there exists a permutation in M among those of maximum y—degree, and its mono-
cording to their cycle structures. Since mial is not cancelled by the monomial of any other permutation. [
permutation in P contains a cycle of
1s in P which contain at least one odd Thus, using the probabilistic method of Schwartz and the algorithm of Boro-
1s in S in which all cycles are of even din, Cook and Pippenger, we have a Random-NC algorithm for computing the rank

d EP. Let M be the set of all permuta- of a set of vertices in a general graph.
Then M S EP, and the permutations

he perfect matchings in G. ;4:;;2:0%;5. 1. The procedure Rank is exccuted in O(log?|V|) steps using O(|V[*%)
(0) ]] bioey- 2. The probability that the procedure Rank fails to compute the correct value of Rank (S)
i he® - isbounded by O(|IE|=3), and this event does not depend on the input. |}

¥
i
A




44 R. M. KARP, E. UPFAL, A. WIGDERSON

Combining now the results of Lemmas 2.1—2.5 we have

Theorem 2.5. For any input graph IG=(IV, IE):

1. The procedure Find-Perfect-Matching uses O(|IV|%%) processors and termi-
nates within O(log® |IE|) steps with probability 1 —|IE|~¢ for some c¢=>0.

2. The probability that the procedure fails to produce a perfect matching when applied
to a graph that possesses one is bounded by |1E|™1. |}

3. Further results

In this section we derive Random-NC algorithms for several further prob- .

lems related to matching and network flows. We begin by giving such an algorithm
for finding a perfect matching of maximum weight in an edge-weighted graph G=
=(IV, IE, »), when the edge-weights ({i,j}) are given in unary.

Definition 3.1. Let MW denote the set of perfect matchings of maximum weight in
the weighted graph G=(V, E, w). For any set SSE define

Ranky (S) = M&’fv ISNA|

In words Ranky (S) is an integer giving the maximum number of edges from
§ that participate in a perfect matching of maximum weight in G.

It is easy to verify that running the procedure Find-Perfect-Matching
with the new rank function computes the desired perfect matching in an expected

number of iterations of order log |E|. The only difficulty is to show that the new
Ranky, function is computable in Random NC. The following theorem, in combi-

nation with Theorem 2.2, establishes this fact.

Theorem 3.1. Let G=(V,E, w), SSE, and define the matrix B[S] as follows:

[ yz*x; if {i,j}eS, i<j, and o({i,j})=w
|—yz”x,~j if {i,j}€s, i>j, and o({i,j})=w '
by = z¥xy; if {i,j}€E-S,i<j, and o({i,j})=w
—z¥x; if {L,j}€E-S, i>=j, and o({i,j})=w
0 if {i,j}4E.

Let det(B[S)=2 Q2" andlet L=Max {t|Q,=0}.
1

1. The the maximum weight of a perfect matching in G is L/2.
2. Ranky(S) is equal to half the degree in y of Qp, the coefficient of z". ||

The proof of Theorem 3.1 is quite similar to that of Theorem 2.4. First it is
shown that the permutations containing odd cycles make a net contribution of zero
to det (B[S]). Then attention is restricted to EP, the set of permutations with all
cycles even that make a nonzero contribution to det(B[S]). Let L be the highest *

v
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degree to which z occurs in the monomial associated with such a permutation, and
let d be the highest degree of y that occurs in a monomial that is of degree L in z.
It is shown that, among the permutations whose monomials are of degree L in z
and of degree d in y, there is at least one whose cycles are all of length 2. Such a per-
mutation is shown to correspond to a matching of weight L/2 containing d/2 edges
from S; moreover, it is shown that this matching is of maximum weight and, among
matchings of maximum weight, has a maximum number of edges from S. Finally,
it is shown that the monomials of degree L in z and d in y associated with permu-
tations in EP make a nonzero net contribution to det(B{S]), so that the polynomial
det(B[S]) is of degree L in z, and the coefficient of z in this polynomial is of degree
din y.

In the following paragraphs we use the technique of reducibility to show that
further matching and flow problems lie in Random NC. All the reductions mentioned
below can be performed in logspace.

1. Maximum cardinality matching. The problem of constructing a maximum
cardinality matching in a graph G with vertex set ¥ and edge set F is easily reduced
to the problem of constructing a perfect matching of maximum weight in a graph
G’ with vertex set ¥ in which each edge has weight zero or one. We can assume
that |V| is even. In this reduction G’ is the complete graph on vertex set V; edge
{i,j} of the complete graph receives weight one if {i,/} lies in E, and weight zero
otherwise. This reduction shows that the maximum cardinality matching problem
lies in Random-NC. (A different reduction for this problem is given in [12]).

2. Vertex weighted matching. The vertex-weighted matching problem is in
Random NC even when the weights of the vertices are given in binary notation.
In this problem we are given a graph G with vertex set ¥ in which each vertex v has
a positive weight w(v). We seek a matching that covers a set of vertices of maximum
total weight.

This problem can be approached with the help of matroid theory. The results
from matroid theory that we require can be found in the comprehensive reference
[16]). Call a set of vertices S independent if there is a matching that covers all the
vertices in S'; then our goal is to construct an independent set of maximum weight.
Let 7 be the family of all independent sets. The structure (¥, 7) is a matroid. In this
matroid, the rank of a set of vertices S is just the maximum number of vertices
from S that are covered by a matching. A maximum-weight independent set T in
a matroid can be constructed by the following rule: let the elements be v,, v;, ..., vy
in order of decreasing weight; then, for i=1,2,...,|V]|,v; liesin T if and only i
Rank ({v1, v3, .., v;})>Rank ({v1, 03, ..., v;_1})- Once T is known, the desired
matching is constructed by finding a perfect matching in the subgraph of G induced
by T, using the main algorithm of this paper.

Thus, a Random-NC algorithm for the vertex-weighted matching problem
is at hand provided we can give a Random-NC algorithm for computing the rank
of a set of vertices in this matroid. But the problem of computing Rank(S) is easily
reduced to that of determining a maximum-weight perfect matching in a graph K
with vertex set ¥ whose edges are of weight 0, 1 and 2. We can assume without loss
of generality that the given graph G=(V, E) has an even number of vertices. The
graph K is the complete graph on vertex set V. If edge {i,j} does not lie in E then
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{i, /}is given weight 0 if {i, /} lies in E, then the weight of {7, j}is }S N{i,j }l Clearly,
the maximum weight of a perfect matching in K is the rank of S. Thus we have
shown that the vertex-weighted matching problem lies in Random NC.

3. Network flow. First, consider the problem of constructing a maximum s—1
flow in a directed graph in which each edge has capacity 1. There is a classical re-
duction of this problem to the problem of constructing a maximum matching in
a bipartite graph, as follows. Let the flow network be G=(V, E), with source s and
sink 7. We may assume that s has in-degree 0 and 7 has out-degree 0. The reduction
constructs a bipartite graph H with bipartition (V;, V3). Each part of the bipartition
is a copy of the edge set of G. Thus, Vy={(e, Dle€E} and V,={(e,2)lecE}. If
the head of edge e is also the tail of edge f (i.e., e=(i, /) and f=(j, k) for some
i,j and k) then H contains and edge between (e, 1) and (f; 2). If an edge e in Gis
incident with neither s nor ¢, then H has an edge from (e,1) to (e, 2). Then a maxi-
mum matching in H yields a maximum flow in G according to the following rule:
edge e carries a flow of 1 if and only if (e, 1) is matched with some vertex ( f, 2),
where e=f, or (e, 2) is matched with some vertex ( f; 1), where es=f. The reduction
just given extends easily to the case in which the flow network has edges with integer
capacities, provided these capacities are given in unary. The idea is to replace each
edge {i,/}, of capacity ¢, with ¢ parallel edges from i to j, each of capacity 1. All
capacities in the resulting network are 1, and thus the reduction to bipartite matching
applies. Thus, we have shown that the following problem is in Random NC: construct
a maximum s—¢ flow in a directed flow network whose edge capacities are given
in unary.

We summarize the constructions and reductions given in this section by a
theorem.

Theorem 3.2. The following problems lie in Random-NC:

(i) Constructing a perfect matching of maximum weight in a graph whose edge
weights are given in unary;

(ii) Constructing a maximum matching;
(i) Constructing a matching covering a set of vertices of maximum weight in a graph
whose vertex weights are given in binary;
(iv) Constructing a maximum s—t flow in a directed graph whose edge weights are
given in unary. |

Our result about network flows stands in interesting contrast to the following
result due to Goldschlager, Shaw and Staples [7]: the problem of constructing a
maximum s—¢ flow in a directed flow network with edge capacities given in binary
is complete in P with respect to logspace reductions. Since it is generally believed
that such complete problems do not lie in Random NC, it appears that the parallel
complexity of the max-flow problem depends critically on whether the capacities
are given in unary or in binary. Nevertheless, the following result can be given:

Theorem 3.3. There is a randomized parallel algorithm to construct a maximum
s—t flow in a directed network whose edge weights are given in binary, such that the
number of processors used is bounded by a polynomial in the number of vertices, and
the time used is O((log VY log C), where C is the largest capacity of any edge and
k is a constant. |
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This result is proved by combining the methods of the present paper with
the Edmonds—XKarp scaling technique [6]. Of course the result does not place the
problem in Random NC, since log C is a linear, rather than polylogarithmic, func-
tion of the number of bits needed to express C in binary.

4. Discussion

Each of the randomized algorithms given in this paper has a small probability
of giving an erroneous result; for example, procedure Find-Perfect-Matching
may fail to produce a perfect matching in a graph that possesses one, and therefore
its failure does not indicate with certainty that no perfect matching exists. Running
the algorithm many times in parallel can reduce the probability of error to an ex-
ponentially low level, but can never eradicate it entirely. Howard Karloff [8] has
given a Random NC algorithm for the odd-set cover problem, which is the “dual”
of the matching problem. As Karloff points out, this result can be combined with
our algorithms to yield algorithms for the perfect matching problem and the maxi-
mum matching problem which run in polylog expected time and always give the
correct result; ie., Las Vegas algorithms rather than Monte Carlo algorithms.

It remains an open question whether randomization can be dispensed with
entirely in these problems. It would be very nice to show that the problem of deciding
whether a graph has a perfect matching lies in NC, and even nicer to show that the
problem of constructing a perfect matching lies in NC.

Finally, the investigations reported here have led us into a broader study of
the relation between decision problems and search problems; the results of that
study are reported in the companion paper [9].
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