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Abstract

We study the online ad-auctions problem introduced by Mehta et. al. [15]. We design a(1 − 1/e)-
competitive (optimal) algorithm for the problem, which is based on a clean primal-dual approach, matching
the competitive factor obtained in [15]. Our basic algorithm along with its analysis are very simple.
Our results are based on a unified approach developed earlier for the design of online algorithms [7, 8].
In particular, the analysis uses weak duality rather than a tailor made (i.e., problem specific) potential
function. We show that this approach is useful for analyzing other classical online algorithms such as ski
rental and the TCP-acknowledgement problem. We are confident that the primal-dual method will prove
useful in other online scenarios as well.

The primal-dual approach enables us to extend our basic ad-auctions algorithm in a straight forward
manner to scenarios in which additional information is available, yielding improved worst case competitive
factors. In particular, a scenario in which additional stochastic information is available to the algorithm,
a scenario in which the number of interested buyers in each product is bounded by some small numberd,
and a general risk management framework.

1 Introduction

Maximizing the revenue of a seller in an auction has received much attention recently, and studied in many
models and settings. In particular, the way search engine companies such as MSN, Google and Yahoo!
maximize their revenue out of selling ad-auctions was recently studied by Mehtaet al. [15]. In the search
engine environment, advertisers link their ads to (search) keywords and provide a bid on the amount paid
each time a user clicks on their ad. When users send queries to search engines, along with the (algorithmic)
search results returned for each query, the search engine displays funded ads corresponding toad-auctions.
The ads are instantly sold, or allocated, to interested advertisers (buyers). The total revenue out of this fast
growing market is currently billions of dollars. Thus, algorithmic ideas that can improve the allocation of the
ads, even by a small percentage, are crucial. The interested reader is refered to [16] for a popular exposition
of the ad-auctions problem and the work of [15].

Mehtaet al. [15] modeled the optimal allocation of ad-auctions as a generalization of online bipartite
matching [13]. There aren bidders, where each bidderi (1 ≤ i ≤ n) has a known daily budgetB(i). Ad-
auctions, orproducts, arrive one-by-one in an online fashion. Upon arrival of a product, each buyer provides
a bid b(i, j) for buying it. The algorithm (i.e., theseller) then allocates the product to one of the interested
buyers and this decision is irrevocable. The goal of the seller is to maximize the total revenue accrued. Mehta
et al. [15] proposed a deterministic(1 − 1/e)-competitive algorithm for the case where the budget of each
bidder is relatively large compared to the bids. This assumption is indeed realistic in the ad-auctions scenario.
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1.1 Results and Techniques

We propose a simple algorithm and analysis for the online ad-auctions problem which is based on a clean
primal-dual framework. The competitive ratio of our algorithm is(1 − 1/e), thus matching the bounds of
[15]. The primal-dual method is one of the fundamental design methodologies in the areas of approximation
algorithms and combinatorial optimization. Recently, Buchbinder and Naor [7, 8] have further extended
the primal-dual method and have shown its applicability to the design and analysis of online algorithms.
We use the primal-dual method here for both making online decisions as well as for the analysis of the
competitive factors. Moreover, we observe that several other classic online problems, e.g. ski rental and TCP
acknowledgement [9, 12], for which (optimal)e/(e − 1) competitive (randomized) algorithms are known,
can be viewed and analyzed within the primal-dual framework, thus leading to both simpler and more general
analysis. Our bounds for the two problems are optimal and are obtained as follows. First, ane/(e − 1)
competitive fractional solution is computed and then the solution is rounded online with no further cost,
yielding an optimal randomized algorithm. This generalizes and simplifies the online framework developed
in [12]. It is no coincidence that the techniques developed for the ad-auctions problem are also applicable to
the ski rental and TCP acknowledgement problems; in fact, these problems are in some sense dual problems
of the ad-auctions problem. Another interesting outcome of our work is a deterministic(1−1/e)-competitive
fractional algorithm1 for the online matching problem in bipartite graphs [13]. However, rounding with no
loss the fractional solution to an integral solution, thus matching the bounds of [13], remains an open problem.

We remark that in [7, 8] a primal-dual framework for online packing and covering problems is presented.
This framework includes, for example, a large number of routing and load balancing problems [4, 3, 10, 8], the
online set cover problem [1], as well as other problems. However, in these works only logarithmic competitive
factors are achieved (which are optimal in the considered settings), while the ad-auctions problem requires
much more delicate algorithms and analysis. Our analysis of the algorithms we design in this paper is very
simple and uses weak duality rather than a tailor made (i.e., problem specific) potential function. We believe
our results further our understanding of the primal-dual method for online algorithms and we are confident
that the method will prove useful in other online scenarios as well.

1.1.1 Extensions

The (1 − 1/e) competitive factor is tight for the general ad-auctions model considered by [15]. Therefore,
obtaining improved competitive factors requires extending the model by relaxing certain aspects of it. The
relaxations we study reveal theflexibility of the primal-dual approach, thus allowing us to derive improved
bounds. The algorithms developed for the different extensions (except for the bounded degree case) build very
nicely on the basic ad-auctions algorithm, thus allowing us to gain more insight into the primal-dual method.
We also believe that the extensions we consider result in more realistic ad-auctions models. We consider four
relaxations and extensions of the basic model.

Multiple Slots. Typically, in search engines, keywords can be allocated to several advertisement slots. A
slot can have several desired properties for a specific buyer, such as rank in the list of ads, size, shape, etc.
We extend the basic ad-auctions algorithm to a scenario in which there are` slots to which ad-auctions can
be allocated. Buyers are allowed to provideslot dependentbids on keywords and we assume that each buyer
would like to buy only asingleslot in each round. Our basic algorithm generalizes very easily to handle
this extension, yielding a competitive factor of1 − 1/e. Specifically, the algorithm computes in each round
a maximum weight matching in a bipartite graph of slots and buyers. The proof then uses the fact that
there exists an optimal primal-dual solution to the (integral) matching problem. In retrospective, our basic
ad-auctions algorithm can be viewed as computing a maximum weight matching in a (degenerate) bipartite

1In fact, in Section 5 we show that the bound is slightly better as a function of the maximum degree.
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Lower Bound Upper Bound Lower Bound Upper Bound
d = 2 0.75 0.75 d = 10 0.662 0.651
d = 3 0.704 0.704 d = 20 0.648 0.641
d = 5 0.686 0.672 d →∞ 0.6321. . . 0.6321 . . .

Figure 1: Summary of upper and lower bounds on the competitive ratios for certain values ofd.

graph in which one side contains a single vertex/slot. We note that Mehta et. al. [15] also considered a
multiple slots setting, but with the restriction that each bidder has the same bid for all the slots.

Incorporating Stochastic information. Suppose that it is known that a bidder is likely to spend a good
fraction of its daily budget. This assumption is justified either stochastically or by experience. We want to
tweak the basic allocation algorithm so that the worst case performance improves. As we tweak the algorithm
it is likely that the bidder spends either a smaller or a larger fraction of its budget. Thus, we propose to tweak
the algorithm gradually until a steady state is reached, i.e., no more tweaking is required. Suppose that at the
steady state bidderi is likely to spentgi fraction of its budget. In a realistic modeling of a search engine it
is likely to assume that the number of times each query appears each day is more or less the same. Thus, no
matter what is the exact keyword pattern, each of the advertisers spends a good fraction of its budget, say 20%.
This allows us to improve the worst case competitive ratio of our basic ad-auctions algorithm. In particular,
when the ratio between the bid and the budgets is small, the competitive ratio improves from1 − 1/e to
1− 1−g

e1−g , whereg = mini∈I{gi} is the minimum fraction of budget extracted from a buyer. As expected, the
worst case competitive ratio is(1− 1/e) wheng = 0, and it is1 wheng = 1.

Bounded Degree Setting. The proof of the(1− 1/e) lower bound on the competitiveness in [15] uses the
fact that the number of bidders interested in a product can be unbounded and, in fact, can be as large as the
total number of bidders. This assumption may not be realistic in many settings. In particular, the number
of bidders interested in buying an ad for a specific query result is typically small (for most ad-auctions).
Therefore, it is interesting to consider an online setting in which, for each product, the number of bidders
interested in it is at mostd ¿ n. The question is whether one can take advantage of this assumption and
design online algorithms with better competitive factor (better than1− 1/e) in this case.

As a first step, we resolve this question positively in a slightly simpler setting, which we call theallocation
problem. In the allocation problem, the seller introduces the products one-by-one and sets a fixed priceb(j)
for each productj. Upon arrival of a product, each buyer announces whether it is interested in buying it for
the set price and the seller decides (instantly) to which of the interested buyers to sell the product. We have
indications that solving the more general ad-auctions problem requires overcoming a few additional obstacles.
Nevertheless, achieving better competitive factors for the allocation problem is a necessary non-trivial step.
We design an online algorithm with competitive ratioC(d) = 1 − d−1

d(1+ 1
d−1)

d−1 . This factor is strictly better

than1 − 1/e for any value ofd, and approaches(1 − 1/e) from above asd goes to infinity. We also prove
lower bounds for the problem that indicate that the competitive factor of our online algorithm is quite tight.
Our improved bounds for certain values ofd are shown in Figure 1.

Our improved competitive factors are obtained via a new approach. Our algorithm is composed of two
conceptually separate phases that run simultaneously. The first phase generates online a fractional solution
for the problem. A fractional solution for the problem allows the algorithm to sell each product in fractions to
several buyers. This problem has a motivation of its own in case products can be divided between buyers. An
example of a divisible product is the allocation of bandwidth in a communication network. This part of our
algorithm that generates a fractional solution in an online fashion is somewhat counter-intuitive. In particular,
a newly arrived product is not split equally between buyers who have spent the least fraction of their budget.
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Such an algorithm is referred to as a “water level” algorithm and it is not hard to verify that it does not
improve upon the(1−1/e) worst case ratio, even for small values ofd. Rather, the idea is to split the product
between several buyers that haveapproximately spent the same fraction of their total budget. The analysis
is performed through (online) linear programmingdual fitting: we maintain during each step of the online
algorithm a dual fractional solution that bounds the optimum solution from above. We also remark that this
part of the algorithm yields a competitive solution even when the prices of the products are large compared
with the budgets of the buyers. As a special case, the first phase implies aC(d)-competitive algorithm for the
online maximum fractional matching problem in bounded degree bipartite graphs [13].

The second phase consists of rounding the fractional solution (obtained in the first phase) in an online
fashion. We note again that this is only a conceptual phase which is simultaneously implemented with the
previous phase. This step can be easily done by using randomized rounding. However, we show how to
perform the rounding deterministically by constructing a suitable potential function. The potential function is
inspired by the pessimistic estimator used to derandomize the offline problem. We show that if the price of
each product is small compared with the total budget of the buyer, then this rounding phase only reduces the
revenue by a factor of1− o(1) compared to the revenue of the fractional solution.

Risk Management. Some researchers working in the area of ad-auctions argue that typically budgets are
not strict. The reason they give is that if clicks are profitable, i.e., the bidder is expected to make more money
on a click than the bid on the click, then why would a bidder want to limit its profit. Indeed, Google’s Adwords
program allows budget flexibility, e.g., it can overspend the budget by 20%. In fact, the arguments against
daily budgets are valid for any investment choice. For example, if you consider investing ten thousand dollars
in stock A and ten thousand dollars in stock B, then the expected gain for investing twenty thousand dollars
in either stocks is not going to be less profitable in expectation (estimated with whatever means). Still, the
common wisdom is to diversify and the reason isrisk management. For example, a risk management tools
may suggest that if a stock reaches a certain level, then execute buy/sell of this stock and/or buy/sell the
corresponding call/put options.

Industry leaders are proposing risk management for ad-auctions too. The simplest form of risk manage-
ment is to limit the investment. This gives us the notion of abudget. We consider a more complex form of
real time risk management. Instead of strict budgets, we allow a bidder to specify how aggressive it wants
to bid. For example, a bidder may specify that it wants to bid aggressively for the first hundred dollars of its
budget. After having spent one hundred dollars, it still wants to buy ad-auctions if it gets them at, say, half of
its bid. In general, a bidder has a monotonically decreasing functionf of the budget spent so far specifying
how aggressive it wants to bid. We normalizef(0) = 1, i.e., at the zero spending level the bidder is fully
aggressive. If it has spentx dollars, then its next bid is scaled by a factor off(x). In Section 6 we show how
to extend the primal-dual algorithm to deal with a more general scenario of real time risk management. For
certain settings we also obtain better competitive factors.

1.2 Comparison to Previous Results

Maximizing the revenue of a seller in both offline and online settings has been studied extensively in many
different models, e.g., [15, 2, 14, 6, 5]. The work of [15] builds on online bipartite matching [13] and online
b-matching [11]. The online b-matching problem is a special case of the online ad-auctions problem in which
all buyers have a budget ofb dollars, and the bids are either0 or 1. In [11] a deterministic algorithm is given
for b-matching with competitive ratio tending to(1− 1/e) (from below) asb grows.

The idea of designing online algorithms that first generate a fractional solution and then round it in an
online fashion appeared implicitly in [1]. An explicit use of this idea, along with a general scheme for
generating competitive online fractional solutions for packing and covering problems, appeared in [7]. Further
work on primal-dual online algorithms appears in [8].
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Dual (Packing) Primal (Covering)

Maximize:
∑m

j=1

∑n
i=1 b(i, j)y(i, j) Minimize :

∑n
i=1 B(i)x(i) +

∑m
j=1 z(j)

Subject to: Subject to:
For each1 ≤ j ≤ m:

∑n
i=1 y(i, j) ≤ 1 For each(i, j): b(i, j)x(i) + z(j) ≥ b(i, j)

For each1 ≤ i ≤ n:
∑m

j=1 b(i, j)y(i, j) ≤ B(i) For eachi, j: x(i), z(j) ≥ 0
For eachi, j: y(i, j) ≥ 0

Figure 2: The fractional ad-auctions problem (the dual) and the corresponding primal problem

2 Preliminaries

In the online ad-auctions problem there is a setI of n buyers, each buyeri (1 ≤ i ≤ n) has a known daily
budget ofB(i). We consider an online setting in whichm products arrive one-by-one in an online fashion.
Let M denote the set of all the products. The bid of buyeri on productj (which states the amount of money
it is willing to pay for the item) isb(i, j). The online algorithm canallocate (or sell) the product to any one
of the buyers. We distinguish betweenintegral andfractional allocations. In an integral allocation, a product
can only be allocated to a single buyer. In a fractional allocation, products can be fractionally allocated to
several buyers, however, for each product, the sum of the fractions allocated to buyers cannot exceed1. The
revenue received from each buyer is defined to be the minimum between the sum of the costs of the products
allocated to a buyer (times the fraction allocated) and the total budget of the buyer. That is, buyers can never
be charged by more than their total budget. The objective is to maximize the total revenue of the seller. Let
Rmax = maxi∈I,j∈M{ b(i,j)

B(i) } be the maximum ratio between a bid of any buyer and its total budget.
A linear programming formulation of the fractional (offline) ad-auctions problem appears in Figure 2. Let

y(i, j) denote the fraction of productj allocated to buyeri. The objective function is maximizing the total
revenue of the seller. The first set of constraints guarantees that the sum of the fractions of each product is
at most1. The second set of constraints guarantees that each buyer does not spend more than its budget. In
the primal problem there is a variablex(i) for each buyeri, variablez(j) for each productj, and for all pairs
(i, j) the constraintb(i, j)x(i) + z(j) ≥ b(i, j) needs to be satisfied.

3 The Basic Primal-Dual Online Algorithm

We present here the basic algorithm for the online ad-auctions problem and analyze it via the primal dual
method. The extensions to ski rental and TCP acknowledgement problems are presented in Section 7.

The ad-auctions algorithm produces primal and dual solutions to the linear programs in Figure 2. The
intuition behind the algorithm is the following. If the competitive ratio we are aiming for is1− 1/c, then we
need to guarantee that in each iteration the change in the primal cost is at most1+1/(c−1) the change in the
dual profit. The value ofc is then maximized such that both the primal and the dual solutions remain feasible.

Allocation Algorithm: Initially ∀i x(i) ← 0.
Upon arrival of a new productj allocate the product to the buyeri that maximizesb(i, j)(1− x(i)).
If x(i) ≥ 1 then do nothing. Otherwise:

1. Charge the buyer the minimum betweenb(i, j) and its remaining budget and sety(i, j) ← 1

2. z(j) ← b(i, j)(1− x(i))

3. x(i) ← x(i)
(
1 + b(i,j)

B(i)

)
+ b(i,j)

(c−1)·B(i) (c is determined later).
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Theorem 3.1. The algorithm is(1− 1/c) (1−Rmax)-competitive, wherec = (1 + Rmax)
1

Rmax . WhenRmax

tends to 0 the competitive ratio of the algorithm tends to(1− 1/e).

Proof. We prove three simple claims:

1. The algorithm produces a primal feasible solution.

2. In each iteration: (change in primal objective function)/ (change in dual objective function) ≤ 1 + 1
c−1 .

3. The algorithm produces an almost feasible dual solution.

Proof of (1): Consider a primal constraint corresponding to buyeri and productj. If x(i) ≥ 1 then the primal
constraint is satisfied. Otherwise, the algorithm allocates the product to the buyeri′ for whichb(i′, j)(1−x(i′))
is maximized. Settingz(j) = b(i′, j)(1− x(i′)) guarantees that the constraint is satisfied for all(i, j).
Proof of (2): Whenever the algorithm updates the primal and dual solutions, the change in the dual profit is
b(i, j). (Note that even if the remaining budget of buyeri to which productj is allocated is less than its bid
b(i, j), variabley(i, j) is still set to1.) The change in the primal cost is:

B(i)∆x(i) + z(j) = B(i) ·
(

b(i, j)x(i)
B(i)

+
b(i, j)

(c− 1) ·B(i)

)
+ b(i, j)(1− x(i)) = b(i, j)

(
1 +

1
c− 1

)
.

Proof of (3): The algorithm never updates the dual solution for buyers satisfyingx(i) ≥ 1. We prove that for
any buyeri, when

∑
j∈M b(i, j)y(i, j) ≥ B(i), thenx(i) ≥ 1. This is done by proving that:

x(i) ≥ 1
c− 1

(
c

P
j∈M b(i,j)y(i,j)

B(i) − 1
)

. (1)

Thus, whenever
∑

j∈M b(i, j)y(i, j) ≥ B(i), we get thatx(i) ≥ 1. We prove (1) by induction on the
(relevant) iterations of the algorithm. Initially, this assumption is trivially true. We are only concerned with
iterations in which a product, sayk, is sold to buyeri. In such an iteration we get that:

x(i)end = x(i)start·
(

1 +
b(i, k)
B(i)

)
+

b(i, k)
(c− 1) ·B(i)

≥ 1
c− 1

[
c

P
j∈M\{k} b(i,j)y(i,j)

B(i) − 1
]
·
(

1 +
b(i, k)
B(i)

)
+

b(i, k)
(c− 1) ·B(i)

(2)

=
1

c− 1

[
c

P
j∈M\{k} b(i,j)y(i,j)

B(i) ·
(

1 +
b(i, k)
B(i)

)
− 1

]

≥ 1
c− 1

[
c

P
j∈M\{k} b(i,j)y(i,j)

B(i) · c( b(i,k)
B(i) ) − 1

]
=

1
c− 1

[
c

P
j∈M b(i,j)y(i,j)

B(i) − 1
]

(3)

where Inequality (2) follows from the induction hypothesis, and Inequality (3) follows since, for any0 ≤
x ≤ y ≤ 1, ln(1+x)

x ≥ ln(1+y)
y . Note that whenb(i,k)

B(i) = Rmax then Inequality 3 holds with equality. This is

the reason why we chose the valuec to be(1 + Rmax)
1

Rmax .
Thus, it follows that whenever the sum of charges to a buyer exceeds the budget, we stop charging this

buyer. Hence, there can be at most one iteration in which a buyer is charged by less thanb(i, j). Therefore,
for each buyeri:

∑
j∈M b(i, j)y(i, j) ≤ B(i) + maxj∈M{b(i, j)}, and thus the profit extracted from buyeri

is at least: 
∑

j∈M

b(i, j)y(i, j)


 B(i)

B(i) + maxj∈M{b(i, j)} ≥

∑

j∈M

b(i, j)y(i, j)


 (1−Rmax).

By the second claim the dual it at least1− 1/c times the primal, and thus (by weak duality) we conclude
that the competitive ratio of the algorithm is(1− 1/c) (1−Rmax).
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Dual (Packing)
Maximize:

∑m
j=1

∑n
i=1

∑k
`=1 b(i, j, `)y(i, j, `)

Subject to:
∀1 ≤ j ≤ m, 1 ≤ k ≤ `:

∑n
i=1 y(i, j, k) ≤ 1

∀1 ≤ i ≤ n:
∑m

j=1

∑`
k=1 b(i, j, k)y(i, j, k) ≤ B(i)

∀1 ≤ j ≤ m, 1 ≤ i ≤ n:
∑`

k=1 y(i, j, k) ≤ 1
Primal (Covering)

Minimize :
∑n

i=1 B(i)x(i) +
∑m

j=1

∑`
k=1 z(j, k) +

∑n
i=1

∑m
j=1 s(i, j)

Subject to:
∀i, j, k: b(i, j, k)x(i) + z(j, k) + s(i, j) ≥ b(i, j, k)

Figure 3: The fractional multi-slot ad-auction problem (the dual) and the corresponding primal problem

3.1 Multiple Slots

In this section we show how to extend the algorithm in a very elegant way to sell different advertisement slots
in each round. Suppose there are` slots to which ad-auctions can be allocated and suppose that buyers are
allowed to provide bids on keywords which are slot dependent. Denote the bid of buyeri on keywordj and
slotk by b(i, j, k). The restriction is that an (integral) allocation of a keyword to two different slots cannot be
sold to the same buyer. The linear programming formulation of the problem is in Figure 3.

The algorithm for the online ad-auctions problem is as follows.

Allocation Algorithm: Initially, ∀i, x(i) ← 0. Upon arrival of a new productj:

1. Generate a bipartite graphH: n buyers on one side and` slots on the other side. Edge(i, k) ∈ H,
if b(i, j, k)(1− x(i)) > 0; (i, k) has weightb(i, j, k)(1− x(i)).

2. Find a maximum weight (integral) matching inH, i.e., an assignment to the variablesy(i, j, k).

3. Charge buyeri the minimum between
∑`

k=1 b(i, j, k)y(i, j, k) and its remaining budget.

4. For each buyeri, if there exists slotk for whichy(i, j, k) > 0:

x(i) ← x(i)
(

1 +
b(i, j, k)y(i, j, k)

B(i)

)
+

b(i, j, k)y(i, j, k)
(c− 1) ·B(i)

Note that the algorithm does not update the variablesz(·) ands(·) explicitly. These variables are only
used for the purpose of analysis, and are updated conceptually in the proof using the strong duality theorem.

Theorem 3.2 (Proof in Appendix B). The algorithm is(1− 1/c) (1 − Rmax)-competitive, wherec =
(1 + Rmax)

1
Rmax . WhenRmax → 0 the competitive ratio of the algorithm tends to(1− 1/e).

4 Incorporating Stochastic information

In this Section we improve the worst case competitive ratio when additional stochastic information is avail-
able. We assume that each bidder is likely to spend a good fraction of his budget. Let0 ≤ gi ≤ 1 be a lower
bound on the fraction of the budget buyeri is going to spend. We show that having this additional information
allows us to improve the worst case competitive ratio to1 − 1−g

e1−g , whereg = mini∈I{gi} is the minimal
fraction of budget extracted from a buyer.

The main idea behind the algorithm is that if a buyer is known to spend at leastgi fraction of his budget,
then it means that the corresponding primal variablex(i) will be large at the end. Thus, in order to make the
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primal constraint feasible, the value ofz(j) can be made smaller. This, in turn, gives us additional “money”
that can be used to increasex(i) faster. The tradeoff we have is on the value thatx(i) is going to be once
the buyer spentgi fraction of his budget. This value is denoted byxs(i) and we choose it so that after the
buyer has spentgi fraction of its budget,x(i) = xs(i), and after having extracting all its budget,x(i) = 1.
In addition, we need the change in the primal cost to be the same with respect to the dual profit in iterations
where we sell the product to a buyeri who has not yet spent the threshold ofgi of his budget. The optimal
choice ofxs(i) turns out to be gi

c1−gi−(1−gi)
, and the growth function of the primal variablex(i), as a function

of the fraction of the budget spent, should be linear until the buyer has spent agi fraction of his budget, and
exponential from that point on. The modified algorithm is the following:

Allocation Algorithm: Initially ∀i x(i) ← 0. Upon arrival of a new productj Allocate the product to
the buyeri that maximizesb(i, j)(1−max{x(i), xs(i)}), wherexs(i) = gi

c1−gi−(1−gi)
.

If x(i) ≥ 1 then do nothing. Otherwise:

1. Charge the buyer the minimum betweenb(i, j) and its remaining budget and sety(i, j) ← 1

2. z(j) ← b(i, j)(1−max{x(i), xs(i)})
3. x(i) ← x(i) + max{x(i), xs(i)} b(i,j)

B(i) + b(i,j)
B(i)

1−gi

c1−gi−(1−gi)
(c is determined later).

Theorem 4.1. (Proof is in Appendix B) If each buyer spends at leastgi fraction of its budget, then the

algorithm is:
(
1− 1−g

c1−g

)
(1−Rmax)-competitive, wherec = (1 + Rmax)

1
Rmax .

5 Bounded Degree Setting

In this section we improve on the competitive ratio under the assumption that the number of buyers interested
in each product is small compared with the total number of buyers. To do so, we design a modified primal-dual
based algorithm. The algorithm only works in the case of a simpler setting (which is still of interest) called
theallocation problem. Still, this construction turns out to be non-trivial and gives us additional useful insight
into the primal-dual approach. In the allocation problem, a seller is interested in selling products to a group
of buyers, where buyeri has budgetB(i). DefineBmin = mini B(i). The seller introduces the products
one-by-one and sets a fixed priceb(j) for each productj. Each buyer then announces to the seller (upon
arrival of a product) whether it is interested in buying the current product for the set price. The seller then
decides (instantly) to which of the interested buyers to sell the product. For each productj let S(j) be the set
of interested buyers. We assume that there exists an upper boundd such that for each productj, |S(j)| ≤ d.

The main idea is to divide the buyers intolevelsaccording to the fraction of the budget that they have
spent. For0 ≤ k ≤ d, let L(k) be the set of buyers that have spent at least a fraction ofk

d and less than a
fraction of k+1

d of their budget (buyers in leveld exhausted their budget). We refer to eachL(k) as levelk
and say that it isnonemptyif it contains buyers. We design an algorithm for the online allocation problem
using two conceptual steps. In Section 5.1 we design an algorithm that is allowed to allocate each product in
fractions. We bound the competitive ratio of this algorithm with respect to the optimal fractional solution for
the problem. We then show in Section 5.2 how to deterministically produce an integral solution that allocates
each product to a single buyer. We prove that when the prices of the products are small compared to the total
budget, the loss of revenue in this step is at most ano(1) with respect to the fractional solution.

5.1 Obtaining Competitive Fractional Solution

In this section we describe a simple algorithm that produces a fractional solution to the allocation problem.
Note that our allocation algorithm is somewhat counter-intuitive. In particular, the product is not split equally
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between buyers that spent the least fraction of their budget, but rather to several buyers that have approximately
spent the same fraction of their total budget.

Allocation Algorithm: Upon arrival of a new productj allocate the product to the buyers according to
the following rules:

1. Allocate the product equally and continuously between interested buyers in the lowest non empty
level that contain buyers fromS(j).

2. If during the allocation some of the buyers moved to a higher level, then continue to allocate the
product equally only among the buyers in the lowest level.

3. If all interested buyers in the lowest level moved to a higher level, then start allocating the re-
maining fraction of the product equally and continuously between the buyers in the new lowest
level that contain buyers fromS(j).

4. If all interested buyers have exhausted their budget, then stop allocating the remaining fraction
of the product.

As a first step towards the analysis of the algorithm, define the following potential functionfd for any
parameterd over the interval[0, 1]. The functionfd is piecewise linear and consists ofd linear segments. In
order to define the segments we first define a geometric sequenceat (1 ≤ t ≤ d) inductively as follows:

a1 = 1

d(1+ 1
d−1 )

d−1−(d−1)
, . . . , at = a1 ·

(
1 + 1

d−1

)t−1

.

Thus, the sequenceat is a geometric sequence and we only consider the firstd elements in the sequence.
The potential functionfd is defined for any0 ≤ j ≤ d to befd(

j
d) ,

∑j
t=1 at. A simple calculation yields

the following, for anyj, 1 ≤ j ≤ d:

fd

(
j

d

)
=

j∑

i=1

ai = a1 ·

(
1 + 1

d−1

)j

− 1

(1 + 1
d−1 )− 1

= a1 ·
[
d

(
1 +

1
d− 1

)j−1

− (d− 1)

]
.

In particular, settingj = d, we getfd

(
d
d

)
= 1. As d grows, the potential functionfd actually approxi-

mates the exponential functionf(d=∞)(x) = ex−1
e−1 . This piecewise linear approximation allows us to analyze

more accurately the algorithm and obtain better competitive factors. The functionfd for d = 2, d = 3, and for
d tending to∞ appears in Figure 4. Next, we use the potential function to prove that the allocation algorithm
has the desired competitive factor. Figure 1 provides the competitive ratio for several sample values ofd.

Theorem 5.1. (Proof is in Appendix B.) The allocation algorithm isC(d)-competitive with respect to the
optimal offline fractional solution, where:C(d) = 1− d−1

d(1+ 1
d−1)

d−1 .

The theorem implies aC(d)-competitive fractional algorithm for the online bipartite matching problem
[13] in bounded degree graphs.

5.2 Deterministic Rounding of the Fractional Solution

In this section we show how to deterministically round the fractional solution in an online fashion so as to
get a feasible integral solution with only a negligible loss in revenue. To this end, we introduce the following
potential functionΦ = Φ1 + Φ2. Initially, χ(i, j) = 0 for all i andj.

Φ1 =
1
2n

n∑

i=1

exp





∑

j | i∈S(j)

ln

(
1 +

√
ln 2n

B(i)
· b(j)

)
χ(i, j)−

∑

j | i∈S(j)

√
ln 2n

B(i)
· b(j)y(i, j)



.
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Figure 4: The functionfd for d = 2 andd = 3. They middle value ford = 2 is 1/3. They middle values for
d = 3 are4/19 and10/19.

Φ2 =
1
2

exp





n∑

i=1

∑

j | i∈S(j)

1√
Bmin

b(j)y(i, j) +
n∑

i=1

∑

j | i∈S(j)

ln
(

1− b(j)√
Bmin

)
χ(i, j)



 .

Remark 5.2. Since products arrive online, the potential functionΦ contains only variables that correspond
to products that have already arrived. Thus, a slightly better notation may beΦ(k), denoting the potential
following the arrival of thekth product. However, the current notation simplifies the discussion and proofs.

The integral allocation algorithm is very simple.

1. Run the fractional allocation algorithm.

2. In each iterationj, if there exists a buyeri such that settingχ(i, j) = 1 does not increase the potential
functionΦ, then setχ(i, j) = 1 (breaking ties arbitrarily).

3. If χ(i, j) = 1 and the (residual) budget of buyeri is greater than or equal tob(j), then allocate the
product to buyeri and decrease its budget byb(j).

Note that in case the residual budget of buyeri is not sufficient for buying productj, then we still set
χ(i, j) = 1. (This happens even if the residual budget is zero.) Thus, ifχ(i, j) = 1 then productj is said to
bevirtually allocatedto i. Note that in case the budget of buyeri suffices for buying productj, thenj is both
allocated and virtually allocated toi.

Intuitively, the second term of the potential function,Φ2, ensures that the total sum of the prices of virtually
allocated products is close to the sum of prices of products that were allocated by the fractional solution. The
main concern, then, is that not all the products that are virtually allocated are also allocated, and thus, the
revenue may be smaller. To this end, the first term of the potential function ensures that the total price of
products that are virtually allocated to each buyer is at most1 + o(1) times its budget. Thus, in total most of
the products that are virtually allocated are also allocated. This analysis is done formally in the following. We
start by proving some properties of the potential functionΦ.

Lemma 5.3. The potential functionΦ satisfies the following:

1. Initially, Φ ≤ 1; throughout the algorithm,Φ > 0.

2. In each iteration of the integral allocation algorithm,Φ does not increase, i.e.,Φ is monotonically
non-increasing throughout the algorithm.

The next theorem states that the integral allocation algorithm only reduces the total revenue by a fraction
of o(1). This is true only if the total budget is large compared with the prices of the products.
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Theorem 5.4. (Proof is in Appendix B.) Letbmax denote the maximum cost of a product. The revenue of the
integral allocation algorithm is at least1− o(1) times the revenue of the fractional solution, provided that:

(1 + bmax) ·
√

ln 2n

Bmin
= o(1) (4)

Lower Bounds: As we stated earlier, the standard lower bound example makes use of products with large
number of interested buyers. Though, the same example when restricted to bounded degreed gives quite
tight bounds. Inspecting this bound more accurately we can prove the following lower bound for any value
d. Figure 1 provides the lower bounds for several sample values ofd. The proofs of the lemmas appear in
Appendix B.
Lemma 5.5. For any valued:

C(d) ≤ 1− k − kH(d) +
∑k

i=1 H(d− i)
d

,

whereH(·) is the harmonic number, andk is the largest value for whichH(d)−H(d− k) ≤ 1
Our bound is only tight ford = 2. We can derive better tailor-made bounds for specific values ofd. The

next lemma shows that our algorithm achieves an optimal competitive ratio ford = 3.
Lemma 5.6.

C(3) ≤ 19
27

= 0.704

6 Risk Management

We extend our basic ad-auctions algorithm to handle a more general setting of real time risk management.
Here each buyer has a monotonically decreasing functionf of budget spent, specifying how aggressive it
wants to bid. We normalizef(0) = 1, i.e., at the zero spending level it is fully aggressive. If it has spentx
dollars then its next bid is scaled by a factor off(x). Note that sincef is a monotonically decreasing function,
the revenue obtained by allocating buyeri a set of items is a concave function of

∑
j b(i, j)y(i, j).

Since we are interested in solving this problem integrally we assume the revenue function is piecewise lin-
ear. LetRi be the revenue function of buyeri. Letri be the number of pieces of the functionRi. We define for
each buyer(ri− 1) different budgetsB(i, r), defining the amount of money spent in each “aggression” level.
When the buyer spends money from budgetB(i, r), the aggression ratio isa(i, r) ≤ 1 (a(i, 1) = 1 for each
buyeri). We then define a new linear program with variablesy(i, j, k) indicating that itemj is sold to buyeri
using thekth budget. Note that the ad-auctions problem considered earlier is actually this generalized problem
with two pieces. In some scenarios it is likely to assume that each buyer has a lowest “aggression” level that is
strictly more than zero. For instance, a buyer is always willing to buy an item if he only needs to pay 10% of its
value (as estimated by the buyer’s bid). Our modified algorithm for this more general setting takes advantage
of this fact to improve the worst case competitive ratio. In particular, letamin = minn

i=1{a(i, ri)} be the min-
imum “aggression” level of the buyers, then the competitive factor of the algorithm ise−1

e−amin
. If the minimum

level is only10% (0.1), for example, the competitive ratio is0.656, compared with0.632 ≈ 1 − 1/e of the
basic ad-auctions algorithm. LetRmax = maxi∈I,j∈M,1≤r≤ri−1{a(i,r)b(i,j)

B(i,r) } be the maximum ratio between
a charge to a budget and the total budget. The modified linear program for the more general risk management
setting along with our modified algorithm and the proof of Theorem 6.1 appear in Appendix B.

Theorem 6.1. The algorithm is
(

c−1
c−amin

)
(1 − Rmax)-competitive, wherec = (1 + Rmax)

1
Rmax . When

Rmax → 0 the competitive ratio of the algorithm tends toe−1
e−amin

.
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Dual (Packing) Primal (Covering)
Maximize:

∑m
j=1 y(j) Minimize : B · x +

∑m
j=1 z(j)

Subject to: Subject to:∑m
j=1 y(j) ≤ B For each dayj: x + z(j) ≥ 1

For each dayj: y(j) ≤ 1

Figure 5: The fractional ski problem (the primal) and the corresponding dual problem

7 Ski Rental and Dynamic TCP Acknowledgement Problems

In this section we show how to obtain optimal fractional algorithms, as well as randomized integral algorithms,
using the online primal-dual technique developed in the paper for the well known ski rental and dynamic TCP
acknowledgement problems. Both problems were considered previously, e.g. [12]. We show a very simple
algorithm and simple analysis that uses weak duality. Both problems are, in fact, minimization problems
that are very close to the dual problem of the ad-auctions problem. Due to lack of space the dynamic TCP
acknowledgement problem appears in Appendix A. We believe that our approach to the design and analysis
of online algorithm via the primal-dual method is quite general and will find additional applications in the
future, in both minimization and maximization online problems.

The Ski Rental Problem: The classic ski rental problem is the following. A customer arrives at a ski
resort, where renting skis costs $1 per day, while buying skis costs$B. The unknown factor is the number
of skiing days left before the snow melts. This is the customer’s last vacation, so the goal is to minimize
the total expenses. We develop both fractional algorithms, as well as randomized integral algorithms, using
a primal-dual approach. The offline problem (withm skiing days) can be formulated by the simple covering
linear system in Figure 5. Variablex is set to1 if we decide to buy the skis. For each dayj, variablez(j) is
set to1 if we decide to rent the skis on that day. The constraints guarantee that on each day we either rent skis
or buy them. The dual system is also extremely simple and consists of variablesy(j) corresponding to each
day j. In the fractional version of the problem it is required that the sum of the fractions corresponding to
renting and buying is at least1 on each day. In the online setting new primal constraints (days) arrive one by
one. Upon arrival, each primal constraints should be satisfied, and we demand that the primal variables can
only be increased. We are now ready to present the online algorithm.

Initially, x ← 0. Each new day (jth new constraint), ifx < 1:

1. z(j) ← 1− x andx ← x
(
1 + 1

B

)
+ 1

(c−1)·B . (The value ofc is determined later.)

2. y(j) ← 1.

The analysis is extremely simple. We need to show: (i) the primal and dual solutions are feasible; (ii)
in each iteration, the ratio between the change in the primal and dual objective functions is bounded by
(1 + 1/(c− 1)). This will prove that the algorithm is(1 + 1/(c− 1))-competitive.

First, it is easy to see that the primal solution we produce on each day is feasible. Second, ifx < 1, the
dual objective function increases by1, and the increase in the primal objective function isB∆x + z(j) =
x + 1/(c − 1) + 1 − x = 1 + 1/(c − 1), thus the ratio is(1 + 1/(c − 1)). Third, to show feasibility of
the dual solution, we need to show that

∑m
j=1 y(j) ≤ B. We prove thatx ≥ 1 after at mostB days of ski.

Variablex is the sum of a geometric sequence in whicha1 = 1/((c − 1)B) andq = 1 + 1/B. Thus, after

B days of ski,x = (1+ 1
B )B−1

c−1 , implying thatc ≤ (1 + 1
B )B. Thus, the competitive ratio is(1 − 1/e) when

B À 1. We note that using the techniques in Section 5, it is possible to improve the competitive ratio to
C(B) = 1− B−1

B(1+ 1
B−1)

B−1 .

In order to get a randomized integral solution, we arrange the increments ofx on the interval[0, 1] and
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choose uniformly in random a number in[0, 1]. We buy on the day corresponding to the increment ofx to
which the random number belongs. It can be shown that the probability of buying on thejth day is exactly
the change in the value ofx on thejth day and the probability of renting the skis on thejth day is exactly
z(j). Thus, the expected cost of the randomized algorithm is the same as the cost of the fractional algorithm.

Acknowledgements: We thank Allan Borodin for pointing to us the mutiple slot setting.
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Dual (Packing) Primal (Covering)
Maximize:

∑
j∈M

∑
t|t≥t(j) y(j, t) Minimize :

∑
t∈T xt +

∑
j∈M

∑
t|t≥t(j)

1
dz(j, t)

Subject to: Subject to:
For eacht ∈ T

∑
j | t≥t(j)

∑
t′≥t y(j, t′) ≤ 1 For eachj, t|t ≥ t(j):

∑k=t
k=t(j) xk + z(j, t) ≥ 1

For eachj, t|t ≥ t(j): y(j, t) ≤ 1
d

Figure 6: The fractional TCP problem (the primal) and the corresponding dual problem

A Dynamic TCP Acknowledgement Problem

In this section we describe an algorithm for the dynamic TCP acknowledgement problem which is similar in
spirit to the online algorithm we presented for the ski rental problem. The TCP acknowledgment problem
was introduced by Dooly, Goldman and Scott [9] who gave a 2-competitive algorithm for the problem. This
bound was later improved by [12] to a randomized(1 − 1/e)-competitive algorithm. We show an algorithm
that is based on our primal dual approach, yielding the same competitive ratio as [12]. The dynamic TCP
acknowledgment problem is the following. A stream of packets arrives at a destination and needs to be
acknowledged. However, it is possible to acknowledge several packets by a single acknowledgement message.
This can save on communication, but requires delaying the acknowledgement of certain messages (which is
undesirable). Thus, the objective function is to minimize the number of acknowledgement messages sent
along with the sum of latencies of the packets.

Let M be the set of packets. For each packetj ∈ M , let t(j) be the time of arrival at the destination.
Assume now that packets can only arrive in discrete times of1

d . We later taked → ∞ so this assumption is
not limiting. With the time discretization assumption, we can formulate the TCP acknowledgement problem
as a covering linear program which appears in Figure 6. In this formulation we have a variablext for each
discrete timet which is set to1 if the algorithm sends an acknowledgement message att. For each packet
j and timet ≥ t(j), we have a variablez(j, t) which is set to1 if packetj is delayed between timet and
time t + 1

d . By this formulation, our objective is minimizing
∑

t∈T xt +
∑

j∈M

∑
t|t≥t(j)

1
dz(j, t). For eachj

and{t|t ≥ t(j)}, we require that
∑t

k=t(j) xk + z(j, t) ≥ 1. This guarantees that either the packet is delayed

between timet and timet + 1
d , or some acknowledgement message was sent since the arrival time of the

packet. The dual packing problem contains variablesy(j, t) for each packetj andt ≥ t(j). We next design a
primal-dual based algorithm for the problem.

Initially, ∀k xk ← 0.
At each discrete timet (iteration), consider each of the packetsj for which

∑k=t
k=t(j) xk < 1.

For each such packetj do the following update:

1. z(j, t) ← 1−∑k=t
k=t(j) xk

2. xt ← xt + 1
d

∑k=t
k=t(j) xk + 1

(c−1)·d (c is determined later).

3. y(j, t) ← 1
d .

The analysis is not very difficult: First, the primal solution we produce is feasible. This follows since we
update for each unsatisfied packetz(j, t) ← 1−∑k=t

k=t(j) xk in each timet.
The second observation is that for each packetj and timet which we update, the change in the dual profit

is 1
d , while the change in our primal cost is:


1−

k=t∑

k=t(j)

xk


 1

d
+

1
d




k=t∑

k=t(j)

xk +
1

c− 1


 =

1
d

(
1 +

1
c− 1

)
.
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Dual (Packing) Primal (Covering)

Maximize:
∑n

i=1

∑`
k=1 b(i, j, k) (1− x(i)) y(i, j, k) Minimize :

∑n
i=1 s(i, j) +

∑`
k=1 z(j, k)

Subject to: Subject to:
∀1 ≤ k ≤ `:

∑n
i=1 y(i, j, k) ≤ 1 ∀(i, k): s(i, j) + z(j, k) ≥ b(i, j, k) ((1− x(i))

∀1 ≤ i ≤ n:
∑`

k=1 y(i, j, k) ≤ 1 ∀i, k: s(i, j), z(j, k) ≥ 0
∀i, k: y(i, j, k) ≥ 0

Figure 7: The matching problem solved for productj. Herex(i), 1 ≤ i ≤ n, is a constant.

Finally, we want to choosec such that the dual solution we produce is feasible. Consider a timet and
a corresponding dual constraint

∑
j | t≥t(j)

∑
t′≥t y(j, t′) ≤ 1. We want that afterd updates ofy(j, t′) that

“belong” to the constraint, all packets that have arrived prior tot are satisfied, and therefore there are no more
updates ofy(j, t′) belonging to the constraint. We prove that afterd such updates,

∑
k≥t xk ≥ 1, and so all

packets that have arrived until timet are satisfied.
We prove by induction on the updates that

∑
k≥t xk ≥ (1+1/d)q−1

c−1 , whereq is the number of updates.
Before the first update, the claim trivially holds. Consider an update ofy(j, t′) (at timet′) such thatt′ ≥ t and
packetj arrived at time≤ t. By the algorithm we get that:

xt′ ← xt′ +
1
d

k=t′∑

k=t(j)

xk +
1

(c− 1) · d ≥ xt′ +
1
d

k=t′∑

k=t

xk +
1

(c− 1) · d

Therefore
∑

k≥t xk after the update is at least:

(1 + 1/d)
∑

k≥t

xk +
1

(c− 1) · d ≥ (1 + 1/d)
(1 + 1/d)q−1 − 1

c− 1
+

1
(c− 1) · d =

(1 + 1/d)q − 1
c− 1

where the inequality follows by the induction hypothesis. Thus, choosingc = (1 + 1/d)d suffices, and thus
whend →∞ we get a(1− 1/e) competitive algorithm. We note also that using the techniques in Section 5,
it is possible to improve the competitive ratio toC(d) = 1− d−1

d(1+ 1
d−1)

d−1 . This is valid provided that packets

only arrive in discrete times of1/d units each.
In order to get a randomized integral solution we arrange the variablesxt on the infinite line. We choose

a random numberp ∈R [0, 1]. We then send an acknowledgement message at each time segmentxt that falls
in p + k for some integer valuek. We remark that we need the random choices to be correlated. It can be
verified that our expected cost is the same as the cost of our fractional algorithm, completing the analysis.

B Proofs of Theorems

Proof of Theorem 3.2: We prove three simple claims:

1. The algorithm produces a primal feasible solution.

2. In each iteration,∆P ≤
(
1 + 1

c−1

)
·∆D.

3. The algorithm produces an almost feasible dual solution.

To prove the claims, we crucially use the fact that the algorithm finds a maximum weight (integral) match-
ing in H via a primal-dual algorithm. The primal and dual matching programs are in Figure 7. The algorithm
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outputs an optimal primal and dual solutions satisfying:

n∑

i=1

∑̀

k=1

b(i, j, k) (1− x(i)) y(i, j, k) =
n∑

i=1

s(i, j) +
∑̀

k=1

z(j, k)

Proof of (1): Recall that the primal constraint in the linear program of the multiple slot problem (see Figure
3) is:

∀i, j, k : b(i, j, k)x(i) + z(j, k) + s(i, j) ≥ b(i, j, k).

Sincez(j, k) + s(i, j) ≥ b(i, j, k) ((1− x(i)), the above constraint is satisfied.
Proof of (2): When thejth product arrives,

∆P =
n∑

i=1

z(j, i) +
∑̀

k=1

s(j, i) +
n∑

i=1

B(i)∆x(i)

=
n∑

i=1

∑̀

k=1

b(i, j, k) (1− x(i)) y(i, j, k) +
n∑

i=1

∑̀

k=1

B(i)
(

b(i, j, k)x(i)y(i, j, k)
B(i)

+
b(i, j, k)y(i, j, k)
(c− 1) ·B(i)

)

=
n∑

i=1

∑̀

k=1

b(i, j, k)y(i, j, k)
(

1 +
1

c− 1

)

Since∆D =
∑n

i=1

∑`
k=1 b(i, j, k)y(i, j, k), the claim follows.

Proof of (3): The algorithm never updates the dual solution for buyers satisfyingx(i) ≥ 1. We prove that for
any buyeri, when

∑m
j=1

∑`
k=1 b(i, j, k)y(i, j, k) ≥ B(i), thenx(i) ≥ 1. This is done by showing that

x(i) ≥ 1
c− 1

(
c

Pm
j=1

P`
k=1 b(i,j,k)y(i,j,k)

B(i) − 1

)
. (5)

Thus, whenever
∑m

j=1

∑`
k=1 b(i, j, k)y(i, j, k) ≥ B(i), we get thatx(i) ≥ 1. We prove (5) by induction on

the (relevant) iterations of the algorithm. Initially, this assumption is trivially true. We are only concerned
about iterations in which thekth slot of productt is sold to buyeri. In such an iteration we get that:

x(i)end = x(i)start·
(

1 +
b(i, t, k)

B(i)

)
+

b(i, t, k)
(c− 1) ·B(i)

≥ 1
c− 1

[
c

P
j∈M\{t}

P`
k=1 b(i,j,k)y(i,j,k)

B(i) − 1

]
·
(

1 +
b(i, t, k)

B(i)

)
+

b(i, t, k)
(c− 1) ·B(i)

(6)

=
1

c− 1

[
c

P
j∈M\{t}

P`
k=1 b(i,j,k)y(i,j,k)

B(i) ·
(

1 +
b(i, t, k)

B(i)

)
− 1

]

≥ 1
c− 1

[
c

P
j∈J\{t}

P`
k=1 b(i,j,k)y(i,j,k)

B(i) · c( b(i,t,k)
B(i) ) − 1

]
=

1
c− 1

[
c

P
j∈M

P`
k=1 b(i,j,k)y(i,j,k)

B(i) − 1
]

. (7)

Where Inequality (6) follows from the induction hypothesis, and Inequality (7) follows since, for any
0 ≤ x ≤ y ≤ 1, ln(1+x)

x ≥ ln(1+y)
y .

By the above, it follows that whenever the sum of the charges to a buyer is more than its budget, we
stop charging this buyer. Thus, there can be at most one iteration in which we charge the buyer by less than
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b(i, j, k). Therefore, for each buyeri:
∑

j∈M

∑`
k=1 b(i, j, k)y(i, j, k) ≤ B(i) + maxj∈M,k{b(i, j, k)}, and

thus the profit extracted from buyeri is at least:

∑

j∈M

b(i, j, k)y(i, j, k)


 B(i)

B(i) + maxj∈M,k{b(i, j, k)} ≥

∑

j∈M

∑̀

k=1

b(i, j, k)y(i, j, k)


 (1−Rmax).

By the second claim the profit of the dual it at least1−1/c times the cost of the primal, and thus, by weak
duality theorem we conclude that the competitive ratio of the algorithm is(1− 1/c) (1−Rmax).

Proof of Theorem 4.1: We first prove a more general claim regarding the final value ofx(i). During the
algorithm we increase the value of primal variablesx(i). For buyeri, let x(i, end) be the final (highest) value
of x(i) (upon termination). By our assumption, buyeri extracted at leastgi fraction of its budget. Whenever
we charge a buyeri for an item andx(i) < xs(i), the algorithm updates:

x(i) ← x(i) +
b(i, j)
B(i)

(
xs(i) +

1− gi

c1−gi − (1− gi)

)

Thus, the final value ofx(i) is:

x(i, end) ≥ gi ·
(

xs(i) +
1− gi

c1−gi − (1− gi)

)
= gi · xs(i) + (1− gi)xs(i) = xs(i) (8)

We next prove three simple claims:

• The algorithm produces a primal feasible solution.

• In each iteration,∆P ≤ (1 + 1−g
c1−g−(1−g)

) ·∆D.

• The algorithm produces an almost feasible dual solution.

Proof of (1): Consider a primal constraint of buyeri and any itemj. In order to make this constraint feasible,
we need to setz(j) ≥ max {0, b(i, j)(1− x(i, end))}. By Equation 8,x(i, end) ≥ xs(i). Thus, when item
j arrives, settingz(j) to be b(i, j)(1 − max{x(i), xs(i)}) ≥ b(i, j)(1 − x(i, end)) suffices to satisfy the
constraint. Since the algorithm chooses the buyeri that maximizes this value, and setsz(j) according to this
maximal value, we get that the constraint corresponding to any buyeri and itemj is satisfied.
Proof of (2): Whenever the algorithm updates the primal and dual solutions the change in the dual profit is
b(i, j). (Note that even if the remaining budget of buyeri to which productj is allocated is less than its bid
b(i, j), variabley(i, j) is still set to1.) The change in the primal cost is:

B(i)∆x(i) + z(j) = B(i) ·
(

b(i, j)max{x(i), xs(i)}
B(i)

+
b(i, j)
B(i)

1− gi

c1−gi − (1− gi)

)

+ b(i, j)(1−max{x(i), xs(i)})
= b(i, j)

(
1 +

1− gi

c1−gi − (1− gi)

)
≤ b(i, j)

(
1 +

1− g

c1−g − (1− g)

)

Proof of (3): The algorithm never updates the dual solution for buyers satisfyingx(i) ≥ 1. We prove that
for any buyeri, when

∑
j∈M b(i, j)y(i, j) ≥ B(i), thenx(i) ≥ 1. This is done by proving that if the buyeri

extractedg′i fraction of its budget (i.e.
∑

j∈M b(i, j)y(i, j) = g′i ·B(i)) then:

x(i) ≥




g′i
[
xs(i) + 1−gi

c1−gi−(1−gi)

]
if g′i ≤ gi

xs(i)cg′i−gi + 1−gi

c1−gi−(1−gi)

[
cg′i−gi − 1

]
if g′i > gi

(9)
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It is easy to check that wheng′i = gi, the two are the same and equal toxs(i). Thus, if the claim is correct,
then whenever buyeri extracts all his budget we get that:

x(i) ≥ xs(i)c1−gi +
1− gi

c1−gi − (1− gi)
[
c1−gi − 1

]

=
gi

c1−gi − (1− gi)
c1−gi +

1− gi

c1−gi − (1− gi)
[
c1−gi − 1

]
= 1

We prove Inequality 9 by induction on the (relevant) iterations of the algorithm. Initially, this assumption
is trivially true. We are only concerned about iterations in which an item, sayk, is sold to buyeri. Let g′i be

the fraction of the budget buyeri spent before the current allocation, and letg′′i = g′i +
b(i,j)
B(i) be the fraction of

the budget buyeri spends after the current allocation. In iterations in whichx(i) < xs(i), we get by Equality
8 thatg′i < gi, and thus:

x(i)end = x(i)start+ xs(i)
b(i, k)
B(i)

+
b(i, k)
B(i)

1− gi

c1−gi − (1− gi)

≥ g′i

[
xs(i) +

1− gi

c1−gi − (1− gi)

]
+ xs(i)

b(i, k)
B(i)

+
b(i, k)
B(i)

1− gi

c1−gi − (1− gi)
(10)

= g′′i

[
xs(i) +

1− gi

c1−gi − (1− gi)

]

Where Inequality 10 follows by the induction hypothesis. We also remark here that if the budget extracted
from buyeri before the iteration is less thangi, and the budget extracted after the iteration is strictly more
thangi, then it is possible to divide the cost of the itemb(i, j) into two costsb(i, j)1 + b(i, j)2 = b(i, j), such
that the budget extracted after virtually sellingb(i, j)1 is exactlygi. We virtually sell both items to buyeri
and changex(i) in two iterations. It is easy to verify that the change ofx(i) is the same as if this was done in
a single iteration.

In iterations in whichx(i) ≥ xs(i) we get by Equality 8 thatg′i ≥ gi and so:

x(i)end = x(i)start

(
1 +

b(i, k)
B(i)

)
+

b(i, k)
B(i)

1− gi

c1−gi − (1− gi)

≥
[
xs(i)cg′i−gi +

1− gi

c1−gi − (1− gi)

[
cg′i−gi − 1

]] (
1 +

b(i, k)
B(i)

)
+

b(i, k)
B(i)

1− gi

c1−gi − (1− gi)
(11)

= xs(i)cg′i−gi

(
1 +

b(i, k)
B(i)

)
+

1− gi

c1−gi − (1− gi)

(
cg′i−gi

(
1 +

b(i, k)
B(i)

)
− 1

)

≥ xs(i)cg′i−gi · c( b(i,k)
B(i) ) +

1− gi

c1−gi − (1− gi)

(
cg′i−gi · c( b(i,k)

B(i) ) − 1
)

(12)

= xs(i)cg′′i −gi +
1− gi

c1−gi − (1− gi)

[
cg′′i −gi − 1

]

Where Inequality 11 follows by the induction hypothesis, and Inequality 12 follows since for any0 ≤
x ≤ y ≤ 1, ln(1+x)

x ≥ ln(1+y)
y .

By the above, it follows that whenever the sum of the charges to a buyer is more than its budget, we stop
charging this buyer. Thus, there can be at most one iteration in which we charge the buyer by less thanb(i, j).
Therefore, for each buyeri:

∑
j∈M b(i, j)y(i, j) ≤ B(i) + maxj∈M{b(i, j)}, and thus the profit extracted
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from buyeri is at least:

∑

j∈M

b(i, j)y(i, j)


 B(i)

B(i) + maxj∈M{b(i, j)} ≥

∑

j∈M

b(i, j)y(i, j)


 (1−Rmax).

By the second claim the profit of the dual it at least1 − 1−gi

c1−gi
≥ 1 − 1−g

c1−g times the cost of the primal,
and thus, by weak duality theorem we conclude that the competitive ratio of the algorithm is(1−Rmax) (1−
1−g
c1−g ).

Proof of Theorem 5.1: Let Y (j) denote the total profit of the algorithm (the dual packing) in thejth
iteration. In each iteration we maintain a corresponding feasible primal solution whose value is denoted by
X(j). Upon arrival of a new product we update both primal and dual programs. The dual (packing) program
is updated by adding a new constraint corresponding to the new product which has arrived, and by adding a
new termb(j)y(i, j) to each constraint of an interested buyer. The primal program is updated by adding a
new variablez(j) for the new product and a constraint of the formb(j)x(i)+ z(j) ≥ b(j) for each buyer who
is interested in the new product.

Initially, the dual and primal programs are empty. In thejth iteration, the change in values of the primal
and dual solutions is denoted by∆X(j) and∆Y (j), correspondingly. We prove that in each iteration:

∆X(j) ≤ 1
C(d)

·∆Y (j)

The primal solution is an assignment of values to the variablesx(i) andz(j). Since these values are not used
by the allocation algorithm, we can set them using future knowledge. For each buyeri, let t(i) (0 ≤ t ≤ d) be
the largest leveli to which this buyer belongs during the algorithm. Thus, buyeri spent overall at leastt(i)/d
fraction of his budget. The variablex(i) grows as a function of the fraction of money that buyeri spent, which
in fact depends on the corresponding dual constraint. Specifically, for buyeri:

x(i) =





fd

(
1

B(i)

∑
j | i∈S(j) b(j)y(i, j)

)
if 1

B(i)

∑
j | i∈S(j) b(j)y(i, j) ≤ t(i)

d

fd

(
t(i)
d

)
if 1

B(i)

∑
j | i∈S(j) b(j)y(i, j) ≥ t(i)

d

The variablesx(i) are monotonically increasing and thus, once a primal constraint is satisfied, it remains
satisfied throughout the run of the algorithm. Hence, in each iteration, it suffices to satisfy the newly added
primal constraints.

Consider first a case in which productj was not fully sold by the algorithm. This means that at the end of
thejth iteration all the buyers inS(j) exhausted their budget. In this case the corresponding variablesx(i) at
the end of the iteration are all1, and thus all the new primal constraints are satisfied, and we can setz(j) ← 0.
We only need to show that the change in the primal profit in this iteration is not too large. When we increase a
variabley(i, j), the derivative of the dual profit of the algorithm isb(j). The derivative of the primal cost is:

B(i) · dfd

d(y(i, j))
≤ B(i) · b(j)

B(i)
· d · ad =

1
C(d)

· b(j).

The inequality follows by taking the maximum derivative of the (convex) functionfd which is:

d · ad = da1

(
1 +

1
d− 1

)d−1

=
1

C(d)
.

Thus, we get that in this iteration∆X(j) ≤ 1
C(d) ·∆Y (j).

Assume now that productj was fully sold to the buyers. Lett, 0 ≤ t ≤ d − 1, be the highest level of
buyers to which the product was sold. Since the algorithm always allocates the product to buyers in the lowest
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possible level it means that all buyers inS(j) used at leastt/d fraction of their money. Let∆0, ∆1, . . . ,∆t

be the fraction of the product that was allocated in each levelk ≤ t. By our assumption:
∑t

k=1 ∆k = 1. We
consider two cases.

Case1: All the buyers inS(j) spend during the algorithm at leastt′/d of their budget fort′ > t. In this case,
for each buyeri, the derivative of the primal cost due to the change inx(i) is:

B(i) · dfd

d(y(i, j))
≤ B(i) · b(j)

B(i)
· d · at+1 = b(j) · d · at+1.

The inequality follows by taking the derivative offd in the highest level in which the product was sold.
We fully allocate the product and hence

∑
i∈S(j) y(i, j) = 1. Thus, the total change of the primal cost due

to the change in the variablesx(i) is at mostb(j) · d · at+1. Since all buyers inS(j) eventually spend during
the algorithm at least(t + 1)/d of their budget, variablex(i) corresponding to buyeri ∈ S(j) will be at the
end of the allocation process at leastf( t+1

d ). Therefore, it is safe to setz(j) = b(j) · (1− f( t+1
d )) in order to

satisfy all the new primal constraints. Thus, the total change in the primal cost in this iteration is:

z(j) +
∑

i∈S′(j)

B(i)∆(x(i)) ≤ b(j)
(

1− f(
t + 1

d
)
)

+ b(j) · d · at+1

= b(j)

(
1− a1 ·

[
d

(
1 +

1
d− 1

)t

− (d− 1)

])
+ b(j) · d · a1 ·

(
1 +

1
d− 1

)t

= b(j) (1 + a1 · (d− 1)) = b(j)


1 +

d− 1

d
(
1 + 1

d−1

)d−1

− (d− 1)


 =

1
C(d)

· b(j).

Since the product was fully sold the dual profit in this case isb(j) and hence we are done with this case.

Case2: There exists at least one buyer inS(j) who eventually spends (throughout the algorithm) less than
a fraction of(t + 1)/d of his budget (but spend at leastt/d). In this case, in order to satisfy the new primal
constraint, it is only safe to setz(j) = b(j) · (1 − f( t

d)). However, note that the buyer that spent less than
(t + 1)/d fraction of its money was present throughout the whole process of dividing the product equally
between all buyers in last levelt. Thus, by our algorithm, this buyer receives at least a fraction∆t

d of the
product. By the definition of the function associated with the variablex(i), the growth function ofx(i) in this
segment (which is larger thant(i)) is zero. Thus, the change in the primal cost due to the increase of the dual
variables in the highest level is at most:

b(j)at+1d · d− 1
d

∆t = b(j) · (d− 1) · at+1 ·∆t. (13)

The change in the primal cost due to the increase of the dual variables in lower levels is at mostb(j) · d ·
at · (1 −∆t). But, at+1 = at ·

(
1 + 1

d−1

)
, and soat = d−1

d · at+1. Thus, the change in the primal cost due

to change in the variablesx(i) is at most:

b(j) · d · at · (1−∆t) = b(j) · d · d− 1
d

· at+1 · (1−∆t) = b(j) · (d− 1) · at+1 · (1−∆t). (14)

Adding up Equations (13) and (14), we get that the total change in the primal cost due to the increase in the
primal variablesx(i) is b(j)(d− 1)at+1. Sincef( t+1

d ) = at+1 + f( t
d), the total change in the primal cost is

at most:

b(j)
(

1− f(
t

d
)
)

+ b(j) · (d− 1) · at+1 = b(j)
(

1− f(
t + 1

d
) + at+1)

)
+ b(j) · (d− 1) · at+1

= b(j)
(

1− f(
t + 1

d
)
)

+ b(j)dat+1 =
1

C(d)
· b(j).
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This change is exactly the same as in case(1). Similarly to case(1), the product was fully sold and so the
dual profit isb(j) and we are done with this case.

Proof of Lemma 5.3: Initially, Φ = 1, and it can easily be verified that subsequentlyΦ is always positive.
The proof of the second claim is probabilistic. Assume that in iterationj the product is allocated frac-

tionally. We choose to virtually allocate the product to buyeri with probabilityy(i, j). This can be done by
simply arranging the valuesy(i, j) on the interval[0, 1] and choosing uniformly in random a number in[0, 1].
The probability of virtually allocating productj to buyeri is then exactlyy(i, j), and the probability of not
allocating (virtually) the product to any of the buyers is1−∑

i∈S(j) y(i, j).
We prove that the expected value of the potential functionΦ does not increase. Thus, either there exists a

buyer such that virtually allocating productj to it does not increaseΦ, or by not allocating productj at allΦ
does not increase. By linearity of expectation, we can analyze each of the terms inΦ corresponding to buyers
in S(j) separately. LetΦS

1,i andΦE
1,i be the values of the term corresponding to theith buyer in the first term

of the potential function,Φ1, before and after the probabilistic choice, correspondingly. Thus,

E
[
ΦE

1,i

]
= y(i, j) · ΦS

1,i exp

{
ln

(
1 +

√
ln 2n

B(i)
· b(j)

)
· 1−

√
ln 2n

B(i)
· b(j)y(i, j)

}

+ (1− y(i, j)) · ΦS
1,i exp

{
−

√
ln 2n

B(i)
· b(j)y(i, j)

}

= ΦS
1,i

((
1 +

√
ln 2n

B(i)
· b(j)y(i, j)

)
exp

{
−

√
ln 2n

B(i)
· b(j)y(i, j)

})
≤ ΦS

1,i,

where the last inequality follows since1 + x ≤ ex for x ≥ 0.
Next, we analyze the second term of the potential function,Φ2. Let ΦS

2 andΦE
2 be the values of this term

before and after the probabilistic choice, correspondingly. Lety(j) =
∑

i∈S(j) y(i, j). y(j) is exactly the
probability that productj is allocated by the probabilistic choice. It can be verified that the value ofΦ2 only
depends on the fact that the product is virtually allocated or not, and does not depend on the identity of the
buyer to whom the product was allocated. Thus,

E
[
ΦE

2

]
= y(j) · ΦS

2 exp
{

1√
Bmin

b(j)y(j) + ln
(

1− b(j)√
Bmin

)}
+ (1− y(j)) · ΦS

2 exp
{

1√
Bmin

b(j)y(j)
}

= y(j)
(

1− b(j)√
Bmin

)
· ΦS

2 exp
{

1√
Bmin

b(j)y(j)
}

+ (1− y(j)) · ΦS
2 exp

{
1√

Bmin

b(j)y(j)
}

= ΦS
2 exp

{
1√

Bmin

b(j)y(j)
}(

1− y(j)
b(j)√
Bmin

)
≤ ΦS

2 ,

where the last inequality follows since1− x ≤ e−x for x ≥ 0.

Proof of Theorem 5.4: Consider firstΦ2. Since each term inΦ is positive, andΦ ≤ 1, then alsoΦ2 ≤ 1.
Thus,

1
2

exp





n∑

i=1

∑

j | i∈S(j)

1√
Bmin

b(j)y(i, j) +
n∑

i=1

∑

j | i∈S(j)

ln
(

1− b(j)√
Bmin

)
χ(i, j)



 ≤ 1.

Simplifying the inequality we get that:

n∑

i=1

∑

j | i∈S(j)

b(j)y(i, j) ≤
√

Bmin ln 2 +
√

Bmin

∑

i∈M

∑

j | i∈S(j)

ln
(

1− b(j)√
Bmin

)−1

χ(i, j)
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≤
√

Bmin ln 2 +
√

Bmin ·
∑

i∈M

∑

j | i∈S(j)

b(j)√
Bmin

1− b(j)√
Bmin

χ(i, j) (15)

=
√

Bmin ln 2 +
n∑

i=1

∑

j | i∈S(j)

1

1− b(j)√
Bmin

b(j)χ(i, j).

Inequality (15) follows since for any0 < x ≤ 1, ln
(

1
1−x

)
= ln

(
1 + x

1−x

)
≤ x

1−x .

If
∑n

i=1

∑
j | i∈S(j) b(j)y(i, j) ≤ Bmin, then each product that is virtually allocated is also allocated and,∑n

i=1

∑
j | i∈S(j) b(j)χ(i, j) ≥ ∑n

i=1

∑
j | i∈S(j) b(j)y(i, j). Otherwise, (simplifying the previous inequal-

ity) we get that:
n∑

i=1

∑

j | i∈S(j)

b(j)χ(i, j) ≥
(

1− bmax√
Bmin

− ln 2√
Bmin

) n∑

i=1

∑

j | i∈S(j)

b(j)y(i, j)

= (1− o(1))
n∑

i=1

∑

j | i∈S(j)

b(j)y(i, j) (16)

Thus, in both cases, the total revenue of a product that the integral algorithm virtually allocates is at least
1 − o(1) times the total revenue of the fractional solution. We now need to analyze the loss in revenue of
the algorithm in the case where a product is virtually allocated to a buyer, but due to insufficient budget,
the product is not allocated to the buyer. We use the first part of the potential function to prove that buyers
do not exceed their budget in the integral solution by much compared with the budget used in the fractional
allocation. Since each term inΦ is positive, andΦ ≤ 1, then each termΦ can be at most1. Consider a term
corresponding to a buyeri. We get that:

1
2n

exp





∑

j | i∈S(j)

ln

(
1 +

√
ln 2n

B(i)
· b(j)

)
χ(i, j)−

∑

j | i∈S(j)

√
ln 2n

B(i)
· b(j)y(i, j)



 ≤ 1.

Simplifying we get:

∑

j | i∈S(j)

b(j)y(i, j) ≥ −
√

B(i) ln 2n +
∑

j | i∈S(j)

ln
(
1 +

√
ln 2n
B(i) · b(j)

)

√
ln 2n
B(i) b(j)

b(j)χ(i, j).

Consider now a buyer for which
∑

j | i∈S(j) b(j)χ(i, j) ≥ B(i). In this case we get that:

∑

j | i∈S(j)

b(j)y(i, j) ≥ −
√

B(i) ln 2n +
∑

j | i∈S(j)

ln
(
1 +

√
ln 2n
B(i) · b(j)

)

√
ln 2n
B(i) b(j)

b(j)χ(i, j)

≥
∑

j | i∈S(j)




ln
(
1 +

√
ln 2n
B(i) · b(j)

)

√
ln 2n
B(i) b(j)

−
√

ln 2n

B(i)


 b(j)χ(i, j) (17)

≥
∑

j | i∈S(j)




√
ln 2n
B(i) · b(j)− 1

2

(√
ln 2n
B(i) · b(j)

)2

√
ln 2n
B(i) b(j)

−
√

ln 2n

B(i)


 b(j)χ(i, j) (18)

=
∑

j | i∈S(j)

[
1− 1

2

√
ln 2n

B(i)
· b(j)−

√
ln 2n

B(i)

]
b(j)χ(i, j) =

∑

j | i∈S(j)

[1− o(1)] b(j)χ(i, j),
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Inequality (17) follows since for these buyers
∑

j | i∈S(j) b(j)χ(i, j) ≥ B(i). Inequality (18) follows since

for anyx ≥ 0, ln(1 + x) ≥ x− 1
2x2. The last equality follows from (4).

We now partition the buyers into two sets,M1 andM2, where the setM1 contains buyers for which∑
j | i∈S(j) b(j)χ(i, j) ≥ B(i), and the setM2 contains the remaining buyers. The total revenue of the

algorithm is:

P =
∑

i∈M1

B(i) +
∑

i∈M2

∑

j | i∈S(j)

b(j)χ(i, j)

≥
∑

i∈M1

∑

j | i∈S(j)

b(j)y(i, j) +
∑

i∈M2

∑

j | i∈S(j)

b(j)χ(i, j) (19)

= (1− o(1))
∑

i∈M1

∑

j | i∈S(j)

b(j)χ(i, j) +
∑

i∈M2

∑

j | i∈S(j)

b(j)χ(i, j) (20)

≥ (1− o(1))
n∑

i=1

∑

j | i∈S(j)

b(j)χ(i, j) ≥ (1− o(1))
n∑

i=1

∑

j | i∈S(j)

b(j)y(i, j). (21)

Inequality (19) follows since the fractional solution is feasible, and thus, for the buyers inM1 it holds that∑
j | i∈S(j) b(j)χ(i, j) ≥ B(i) ≥ ∑

j | i∈S(j) b(j)y(i, j). Inequality (20) follows from our above observation
and inequality (21) follows from Inequality (16). Thus, we get that the loss of revenue of the integral solution
is bounded by a factor ofo(1) with respect to the fractional solution, thus completing the proof.

Proof of Lemma 5.5: We prove that the bound holds even for an algorithm that is allowed to allocate the
products fractionally. We reconsider the standard lower bound example. For anyd, the instance consists of
d buyers, each has unit budget1. Each of the products has unit price. The adversarial arrival sequence is as
follows. There ared products. The first product can be allocated to alld buyers. The next product cannot be
allocated to the buyer to whom the online algorithm allocated the smallest fraction of the first product. The
third product can be allocated only to thed−2 buyers who got most of the previous two items. This sequence
continues until the last product, which can only be allocated to a single buyer.

It is not hard to see that the optimal (maximum) revenue isd. Any deterministic algorithm allocates to the
“poorest” buyer an amount of at most1

d . The second (poorest) buyer gets a fraction of1
d + 1

d−1 . In general,
the revenue extracted from theith poorest buyer ismin {1,H(d)−H(d− i)}. Thus, the competitive ratio of
any algorithm is at most:

1
d

d∑

i=1

min {1,H(d)−H(d− i)} =
1
d

(
1 · (d− k) + k ·H(d)−

k∑

i=1

H(d− i)

)

= 1− k − kH(d) +
∑k

i=1 H(d− i)
d

,

whereH(·) is the harmonic number, andk is the largest value for whichH(d)−H(d− k) ≤ 1

Proof of Lemma 5.6: We prove that the bound holds even for an algorithm that is allowed to allocate the
products fractionally. We consider an instance with9 buyers, each with unit budget. There are9 products
and has unit price. The adversarial sequence is as follows. The first three items can be bought by buyers
{1, 2, 7}, {3, 4, 8}, {5, 6, 9} respectively. Assume without loss of generality that buyers7, 8, 9 got at most
1/3 of a product. No other products will be available for these buyers, so we can assume that the algorithm
allocates exactly1/3 of a product to each of these buyers. Next, there are two products that can be bought by
{1, 2, 5}, {3, 4, 6}, respectively. The total revenue out of these buyers is4 and so we can assume that buyers
5 and6 got at most2/3 of a product each. Next, the four last products arrive and they can each go only to
buyers1, 2, 3 and4, respectively.
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Dual (Packing)
Maximize:

∑m
j=1

∑n
i=1

∑ri

k=1 a(i, k) · b(i, j)y(i, j, k)
Subject to:
∀1 ≤ j ≤ m:

∑n
i=1

∑ri

k=1 y(i, j, k) ≤ 1
∀1 ≤ i ≤ n, 1 ≤ k ≤ ri − 1:

∑m
j=1 a(i, k) · b(i, j)y(i, j, k) ≤ B(i, k)

Primal (Covering)
Minimize :

∑n
i=1

∑r−1
k=1 B(i, k)x(i, k) +

∑m
j=1 z(j)

Subject to:
∀(i, j, k) | 1 ≤ k ≤ ri − 1: a(i, k) · b(i, j)x(i, k) + z(j) ≥ a(i, k)b(i, j)
∀(i, j): z(j) ≥ a(i, ri) · b(i, j)

Figure 8: The fractional generalized risk management ad-auction problem (the dual) and the corresponding
primal problem

It is not hard to see that the optimal (maximum) revenue is9. By the adversarial sequence any determin-
istic algorithm has revenue of at most:4 + 2 · 2

3 + 3 · 1
3 = 19

3 . Thus,C(d) ≤ 19
27 = 0.703.

Modified algorithm for risk management and the proof of Theorem 6.1: As states, the more general
risk management problem can be formulated using a more complex linear program. The primal-dual pair is
described in Figure 8. Our modified algorithm is the following:

Allocation Algorithm: Initially ∀i x(i) ← 0.
Upon arrival of a new productj allocate the product to the buyeri that maximizes:

max
{

ri−1
max
k=1

{a(i, k)b(i, j)(1− x(i, k))} , a(i, ri)b(i, j)
}

Let 1 ≤ r ≤ ri be the the argument for which the maximization is achieved. If1 ≤ r ≤ ri − 1 and
x(i, r) ≥ 1 then do nothing. Otherwise:

1. Charge the the budgetB(i, r) by the minimum betweena(i, r)b(i, j) and the remaining of the
budget and sety(i, j, r) ← 1

2. If r 6= ri then:

• z(j) ← a(i, r)b(i, j)(1− x(i, r)).

• x(i, r) ← x(i, r)(1 + a(i,r)b(i,j)
B(i,r) ) + a(i,r)b(i,j)

B(i,r)
1−a(i,ri)

c−1 (c is determined later).

3. If r = ri thenz(j) ← a(i, ri)b(i, j).

Let Rmax = maxi∈I,j∈M,1≤r≤ri−1{a(i,r)b(i,j)
B(i,r) }, the maximum ratio between a charge to a budget and the

total budget.

Theorem B.1. (Theorem 6.1) The algorithm is
(

c−1
c−amin

)
(1−Rmax)-competitive, wherec = (1 + Rmax)

1
Rmax .

WhenRmax → 0 the competitive ratio of the algorithm tends toe−1
e−amin

.

Proof. We prove three simple claims:

• The algorithm produces a primal feasible solution.

• In each iteration the∆P ≤ (1 + 1−amin
c−1 ) ·∆D.
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• The algorithm produces an almost feasible dual solution.

Proof of (1): Consider some buyeri′ and budgetB(i′, k′). To make this constraint feasible we should choose
z(j) ≥ a(i′, k′)b(i′, j)(1−x(i′, k′). Also for each buyeri and productj, in order to satisfy the last constraint
we needx(j) ≥ a(i, ri)b(i, j). Since the algorithm setz(j) according to the maximal value all constraint
become feasible. If the algorithm do not updatez(j), it means that all these values are at most0 and so all the
constraints are feasible.
Proof of (2): Whenever the algorithm updates the primal and dual solutions, the change in the dual profit is
a(i, r)b(i, j). (Note that even if the remaining of budgetB(i, r) to which productj is being charged is less
thana(i, r)b(i, j), variabley(i, j, r) is still set to1.) If r 6= ri then the change in the primal cost is:

B(i, r)∆x(i, r) + z(j) = B(i, r) ·
(

a(i, r)b(i, j)x(i, r)
B(i, r)

+ a(i, r)b(i, j)
1− a(i, ri)

(c− 1) ·B(i, k)

)

+ a(i, r)b(i, j)(1− x(i, r))

≤ a(i, r)b(i, j)(1 +
1− amin

c− 1
)

If r = ri then the change in the primal cost is:z(j) = a(i, r)b(i, j).
Proof of (3): The algorithm never charges budgetB(i, r) whenx(i, r) ≥ 1 − a(i, ri). This follows since at
that point:

a(i, ri)b(i, j) ≥ a(i, r)b(i, j)(1− (1− a(i, ri))) ≥ a(i, r)b(i, j)(1− x(i, r))

We prove that for any buyeri and1 ≤ r ≤ ri − 1 when
∑

j∈M a(i, r)b(i, j)y(i, j, r) ≥ B(i, r) then
x(i, r) ≥≥ 1− a(i, ri). This is done by proving that:

x(i, r) ≥ 1− a(i, ri)
c− 1

[
c

P
j∈M a(i,r)b(i,j)y(i,j,r)

B(i,r) − 1
]

. (22)

Thus, whenever
∑

j∈M a(i, r)b(i, j)y(i, j, r) ≥ B(i, r), we get thatx(i, r) ≥ 1 − a(ri). We prove (22)
by induction on the (relevant) iterations of the algorithm. Initially, this assumption is trivially true. We only
concern about iterations in which an item, sayk, was sold to buyeri on the budgetB(i, r). In such an iteration
we get that:

x(i, r)end = x(i, r)start·
(

1 +
a(i, r)b(i, k)

B(i, r)

)
+ a(i, r)b(i, k)

1− a(i, ri)
(c− 1) ·B(i, r)

≥ 1− a(i, ri)
c− 1

[
c

P
j∈M\{k} a(i,r)b(i,j)y(i,j,r)

B(i,r) − 1
]
·
(

1 +
a(i, r)b(i, k)

B(i, r)

)

+ a(i, r)b(i, k)
1− a(i, ri)

(c− 1) ·B(i, r)
(23)

=
1− a(i, ri)

c− 1

[
c

P
j∈M\{k} a(i,r)b(i,j)y(i,j,r)

B(i,r) ·
(

1 +
a(i, r)b(i, k)

B(i, r)

)
− 1

]

≥ 1− a(i, ri)
c− 1

[
c

P
j∈M\{k} a(i,r)b(i,j)y(i,j,r)

B(i,r) · c( a(i,r)b(i,k)
B(i,r) ) − 1

]
(24)

=
1− a(i, ri)

c− 1

[
c

P
j∈M a(i,r)b(i,j)y(i,j,r)

B(i,r) − 1
]

Where Inequality 23 follows by the induction hypothesis, and Inequality 24 follows since for any0 ≤
x ≤ y ≤ 1, ln(1+x)

x ≥ ln(1+y)
y .
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By the above, it follows that whenever the sum of the charges of a buyer exceeds its budget, we stop
charging the buyer. Thus, there can be at most one iteration in which we charge a budgetB(i, r) by less than
a(i, r)b(i, j). Therefore, for each budgetB(i, r):

∑
j∈M a(i, r)b(i, j)y(i, j, r) ≤ B(i, r)+maxj∈M{a(i, r)b(i, j)},

and thus the profit extracted from buyeri is at least:

∑

j∈M

a(i, r)b(i, j)y(i, j, r)


 B(i, r)

B(i, r) + maxj∈M{a(i, r)b(i, j)} ≥

∑

j∈M

a(i, r)b(i, j)y(i, j, r)


 (1−Rmax).

By the second claim the profit of the dual it at leastc−1
c−amin

times the cost of the primal, and thus, by weak

duality theorem we conclude that the competitive ratio of the algorithm is(1−Rmax) ( c−1
c−amin

).

25


