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Abstract

We study the online stochastic bipartite matching problema form motivated by display ad
allocation on the Internet. In the online, but adversaréae; the celebrated result of Karp, Vazirani
and Vazirani gives an approximation ratiolof % ~ (0.632, a very familiar bound that holds for many
online problems; further, the bound is tight in this casethimonline, stochastic case when nodes are
drawn repeatedly from a known distribution, the greedy algm matches this approximation ratio,
but still, no algorithm is known that beats the- % bound.

Our main result is &.67-approximation online algorithm for stochastic bipartitatching, break-
ing this1— % barrier. Furthermore, we show that no online algorithm qaxlpce al — e approximation
for an arbitrarily smalk for this problem.

Our algorithms are based on computing an optimal offlinet&wiuto the expected instance, and
using this solution as a guideline in the process of onlitecation. We employ a novel application
of the idea of the power of two choices from load balancing.cammpute two disjoint solutions to the
expected instance, and use both of them in the online atgoiih a prescribed preference order. To
identify these two disjoint solutions, we solve a max flowhdemn in a boosted flow graph, and then
carefully decompose this maximum flow to two edge-disjam@af-)matchings. In addition to guiding
the online decision making, these two offline solutions a®duo characterize an upper bound for the
optimum in any scenario. This is done by identifying a cut eéwalue we can bound under the arrival
distribution.

At the end, we discuss extensions of our results to more gebgrartite allocations that are im-
portant in a display ad application.
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1 Introduction

Bipartite matching problems are central in combinatoratiraization with many applications. Our mo-
tivating application is the allocation of display advestizsents on the Interntand so we will use the
language of this application to define and discuss the pmable

(Online Bipartite Matching)There is a bipartite grapt¥ (A, I, E') with advertisersA and impressiong,

and a setr of edges between them. Advertisersdrare fixed and known. Impressions (or requests) in
(along with their incident edges) arrive online. Upon thevat of an impressiorni € I, we must assign

to any advertiset € A where(i,a) € E(G). Atall times, the set of assigned edges must form a matching
(that is, no end points coincide). O

If the online algorithm knows nothing abolitor £ beforehand, and the impressions arrive in an
arbitrary order, we have ttaglversarial modelThen, Karp, Vazirani and Vazirani[l14] solved this problem
by presenting an online algorithm with an approximatiororaf 1 — 1/e ~ 0.632, and further showed
that no algorithm can achieve a better ratio.

A different model is the online, stochastic one called itlemodel, where impressionsc [ arrive
online according somknownprobability distribution (with repetition). In other wosdin addition toG,
we are given a probability distributioP over the elements af. Our goal is then to compute a maximum
matching onG = (A, I, E), where[ is drawn fromDJ In this iid model, the greedy algorithm achieves
an approximation ratio of — 1/e [12,/1]. Nothing better is known.

Another stochastic model is tmandom order modelvhere we assume thatis unknown, but impres-
sions in/ arrive in a random order. This has proved be an importanyaoal construct for other problems
such as secretary-type problems where worst cases areilyedifficult. It is known that in this case
even the greedy algorithm has a (tight) competitive ratia ef% [12]. Further, no deterministic algo-
rithm can achieve approximation ratio better titarb and no randomized algorithm better thag3 [12].
Currently the best known approximation ratio remains 1/e.

Can one beat the — 1/e bound? We address this main question.

1.1 Our Results and TechniqguesWe present two results for the online stochastic bipartiggcinng
problem under thad model.

_ 2
e We present an algorithm with an approximation factoéeﬁi ~ (.67, breaking past thé — 1/e

bottleneck. We also show that our analysis is tight, by paﬁm?b an example for which our algorithm
achieves exactly this factor.

e We show that there is nb— o(1)-approximation algorithm for this problem. Specificallye whow
that any online algorithm will be off by at lea®6 /27 (or ~ .99 if one requires a family of instances
that grows withn).

Our algorithms are based on computing an optimal offlinet&osiuand using it to guide online al-
location. An intuitive approach under this paradigm is tonpote a matching/orr On the “expected
graph”—that is, the one that would result if all impressiaasurred exactly as many times as expected.
Thereafter, one can use this matching online, that is, wioele h € I arrives, match it withw € A iff
(i,a) € Morr. One expects this to perform well if the empirical probapibf occurrence of each node
i € I is very close to its value in the distribution. This can bevehaf all ¢ € I occur very frequently

For details of this application, see Secfion 1.3.
2\We give more details on this model in Sectidn 2, includingszdssion of different ways to characterize an approximatio
ratio in this context.



using for example the Chernoff bound. However in generahymiae I will have very low frequency. In
this paper, we show that this first attempt achieves (yousguake#)1 — 1/e, and this is tight.

To get our main result and beat— 1/e, we computewo disjoint offline solutions and use them as
follows: when a request arrives, we try to assign it basedheritst offline solution, and if that assignment
fails, we try the second. In order to identify these two digjmffline solutions, we solve a max flow
problem in a boosted flow graph, and then carefully decomgasanaximum flow to two edge-disjoint
(near)-matchings. Other than guiding the online decisiaing, these offline solutions are used to char-
acterize an upper bound for the optimum in each scenarios Atiind is determined by identifying an
appropriate cut in each scenario that is guided by a cut imfffiae solution. This is the main technical
part of the analysis, and we hope this technique proves lusefanalyzing heuristic algorithms for other
stochastic optimization problergs.

The idea of using two solutions is inspired by the idea of powfewo choices in online load bal-
ancing [3/17]. Power of two choices has traditionally mezmiosing between twandomchoices for
online allr({)ﬂcation; in contrast, we use tweterministicchoices, carefully computed offline to guide online
allocatio

Our results are somewhat more general as shown in the tetlseictions, and the problem itself was
motivated from an Internet ad application described later.

1.2 Other Related Work. Our online stochastic matching problem is an example ofnentlecision
making problems studied in the Operations Research lileras stochastic approximate dynamic pro-
gramming problems [5,/4] 8, 10]. Several heuristic metha@&tbeen proposed for such problems (e.g.,
see Rollout algorithms for stochastic dynamic programniingd]), but we are not aware of any rigorous
analysis of the performance of the heuristics. Recentlgrabhline stochastic combinatorial optimization
problems like Steiner tree and set cover problems have bedied in theiid model [13[11]; one can
achieve an approximation factor better than the best boomihé adversarial online variant.

A related ad allocation problem is t#elwords assignmeiroblem [16] that was motivated by spon-
sored search auctions. When modeled as an online bipasstgnanent problem, here, each edge has a
weight and there is Audgeton each ad representing the upper bound on the total weigllgefs that may
be assigned to it. In the offline setting, this problem is N&d{ and several approximations have been
designed[i7, 19,/2]. For the online setting, it is typicalbsamed that every weight is very small compared
to the corresponding budget, in which case there éxist1/e factor online algorithms [16,/6, 12] 1].
Recently, it has been brought to our attention that an ordigerithm [9] gives al — e-approximation,
for any ¢, for Adwords assignment wherpt is larger thanO(’E‘—i) times each bid in the iid and random
permutation models. Thus, technically, our problem isedéht from their problem in two ways: the edges
are unweighted (making it easier), BUPT is not necessarily much larger than each bid (making it lrarde
— in the bipartite graph cas®PT can beO(n)). Moreover, our offline problem is solvable in polynomial
time, and we show that nb— e-approximation can be achieved for our problem for some fexéd fact,
their algorithm, along with other previously studied algons (e.g, algorithms based on greedy, greedy
bid-scaling, and primal-dual technigues) does not achégfeetor better thamh — % for our problem, and
we beatl — % factor using a different technique. An interesting relateadel for combining stochastic-
based and online solutions for the Adwords problem is caemeil in [15], but their approach does not
give an improved approximation algorithm for tiié model.

3For example, this technique might be applicable for proyiagormance guarantees for heuristics for approximatemiy
programming problems studied in the OR literatuie: [5.]4.03, 1

“Previously, power of two choices has been used in variougesiion control and load balancing settings. Our work is a
novel adaptation of this idea to a stochastic bipartite hiatcsetting.



1.3 Applied Motivation: Display Ad Allocation. Our motivation is in part applied and arises from
allocation of “display ads” on the Internet. Here is a higbeleview. Websites have multiple pages (e.g.,
sports, real estate, etc), and several slots where theyigplaylads (say an image or video or a block of
text). Each user who views one of these pages is shown ad#he@ds get what is called an “impression.”
Advertisers pay the website per impression and buy thenicéilp in lots of one thousand) ahead of time,
often specifying a subset of pages on which they would lilértad to appear, or a type of user they wish
to target. All such sales are entered into an ad delivernery$ADS).

Since the ADS serves ads on the same web pages from day theayave an idea of the traffic that
occurs on these websites. While there are inaccuraciesndedd it is nearly impossible to forecast the
number of viewers of a webpage in the future, it is standaddstry practice to use these estimates at the
time of selling inventory to various advertisers (to judgeether a new sale can be accommodated).

When a user visits one of the pages, the ADS determines tloé sligible ads for that slot, and selects
an ad to be shown. Since not all ads are suitable for each pai@,ove have an online (in two senses of
the word) bipartite matching scenario. The ADS would likertaximize the number of impressions that
are filled with ads in order to satisfy their contracts, angstmaximize their revenue.

The underlying problem is an online bipartite matching peobin theiid model. Each € I is an
“impression type,” which may represent a particular webepag even a cross product of targeting criteria
(location, demographic, etc.). Edgés i) then capture the fact that advertisemas interested in an
impression of type. Using past traffic data, the ADS defingsto be the typical number of impressions
they get of type. Then, the distributiorD over I is given byPr[i*] = fe

In contrast to sponsored search, the display ad businesssiisr €0 model, since currently, display
ads are not sold via auctions, and prices are the same feraiiffimpressions of an advertiser (so we do
not need to worry about the underlying auction pricing soe®mDiffering values of ad slots to different
advertisers is handled exogenously via sales contraatisih@nonline problem is just to assign edges to
meet the contracted sales. Still, we note that there are mspgcts of online ad serving that deserve
a richer model than the one we give here, and indeed there tis wark to be done in this area. For
example, the ADS may want to maximize the value of the cotdrfdfilled, rather than the total number
of impressions, or may want to maximize some notion of qualftads served. One extension that we
address is frequency capping, which we discuss in the csiocluAs such, display ad selection problems
are solved routinely by ADSs, and any insights or solutioesdevelop for our problem are likely to be
useful in practice.

2 Preliminaries

Consider the following online stochastic matching problienthe i.i.d model: We are given a bipartite
graphG = (A, I, E) over advertisersA and impression types. Letk = |A| andm = |I|. We are
also given, for each impression type= I, an integer numbe¢; of impressions we expect to see. Let
n =) ;. ¢i. We useD to denote the distribution ovérdefined by Pii] = ¢; /n.

An instancel’ = (G, D, n) of the online stochastic matchingroblem is as follows: We are given
offline access td> and the distributiorD. Online,n i.i.d. draws of impressions ~ D arrive, and we
must immediately assign ad impressioto some advertised where(a,i) € E, or not assign at all.
Each advertises, € A may only be assigned at most dicOur goal is to assign arriving impressions
to advertisers and maximize the total number of assignedessjons. In the following, we will formally
define the objective function of the algorithm.

®All results in this paper hold for a more general case thah eavertiser, has a capacity, and advertises, can be assigned
at mostc, times. This more general case can be reduced easily to theedege case by repeating each nade, number of
times in the instance.



Let D( ) be the set of draws of impression typthat arrive during the run of the algorithm. We let a
scenariol = UierD(i) be the set of i |mpreSS|ons L6t(I) be the “realization” graph, i.e., with node sets
Aandl, and edges’ = {(a,7) : (a,i) € E,i' € D(i)}.

Given an instanc& = (G, D,n) of the online matching problem, we wish an algorithm ALG for

. . . . . . LALG(D) .
which for any instanc&" of the online matching problem, with high pl’ObB.bIh%% > «. In this

case, we say that the algorithm achieves approximatiomrfactvith high probability. One could also

study weaker notions of approximation, nam oiﬁu (the approximation factor in expectation), or
E[gII;CT; | (the expected approximation factor). Note that if one psaadiigh-probability factor o, it

implles an approximation factor in expectation, and an etggapproximation factor of at least— o(1).

2.1 Balls in Bins. In this section we characterize two useful extensions ofstaedard balls-in-bins
problem, where we are interested in the distribution ofaierfunctions of the bins. We characterize the
expectations of these functions, and use Azuma’s ineguatitappropriately defined Doob’s Martingales
to establish concentration results as needed. In pantjoutawill use the following facts. The proofs are
left to the appendix.

Fact 1. Suppose: balls are thrown inton bins, i.i.d. with uniform probability over the bins. L&tbe a
particular subset of the bins, anfl be a random variable that equals the number of bins fBrwith at
least one ball. With probability at leagt— 2¢=<"/2, for anye > 0, we have B|(1 — %) —en< § <
Bl(1-1+L)+en

Fact 2. Supposen balls are thrown inton bins, i.i.d. with uniform probability over the bins. Let
By, B, ..., By be ordered sequences of bins, each of sjz&here no bin is in more thad such se-
quences. Fix some arbitrary subsetC {1,...,c}. We say that a bin sequené®, = (by,...,b.) is
“satisfied” if (i) at least one of its bind; with i ¢ R has at least one ball in it; or, (ii) at least one of
its binsh; with i € R has at least two balls in it. Le¥ be a random variable that equals the number of

satisfied bin sequences. With probability at lease<""/2, we haveS > ¢(1— 2‘;‘) edn— ‘R‘ 2 _¢

n—c?"

3 Hardness

In this section, we show that the expected approximatiotofasf every (randomized) online algorithm is
bounded strictly away from 1.

Consider the 6-cyclé defined byA = {a,b,c}, I = {x,y, z}, andE = {(z, a), (y,a), (y,b), (z,0),
(z,¢), (x,c)}. The distributionD is the uniform distribution1/3,1/3,1/3) on I, andn = 3. We show
that no (randomized) algorithm can achieve an expectedajppation factor better thaf6,/27 on this
instance. Without loss of generality (from the symmetryhad 6-cycle), assume that the first impression
to arrive isz and that it gets assigned to advertiseiNow, if the next two arrivals are both of impression
y, then any algorithm will only be able to assign one of theske dptimal assignment for the scenario
(z,y,y) Is to assigne to ¢, and the tway impressions ta andb. Since the probability ofz, v, y) is 1/9,
the expected approximation factor is at mgst9)(2/3) + (8/9)1 = 26/27.

To get a family of instances on which no algorithm can do betten a constant bounded away from
1, we will have to construct an instance consisting of a langmberk copies of 6-cycles. Using this idea,
we can prove the following theorem. The details of the proeflaft to the appendix.

Theorem 3. There is an instance of the online stochastic matching probin which no algorithm can
achieve an expected approximation factor better tg%lri\/loreover, there exists a family of instances with
n — oo for which no algorithm can achieve an expected approxinmatibl — o(1).



4 Offline Algorithms for Online Matching

In this section, we present our improved online algorithragled by offline solutions. Before stating
the improved approximation result, we “warm up” with a simphatural algorithm that uses the idea of
computing an offline solution to “guide” our online choicebhis algorithm will only achieve 4 — %
approximation (which is tight). The proof of this part ilttstes the framework we will use in the second
section to beat — %; however we will need a new idea to achieve this—namely, sgeafi aseconcdbffline
solution.

4.1 *“Suggested Matching” Algorithm: a1 — é-Approximation. The suggested matchingigorithm

is a first attempt at the approach of using an offline solutmnohline matching. In this algorithm, we
simply find a maximum matching in the graph we “expect” toarithen restrict our online choices to
this matching.

Offline Algorithm.We will describe this algorithm more formally in terms of thiandard characterization
of b-matching as a max-flow problem, since we will later use tlow fyraph explicitly to boundPT.
Given an instancé' = (G(A, I, E),D,n) of the problem, we will find a max-flow in a graphi; con-
structed fromG as follows: define a new source nogleand an edgés, a) with capacityl to all a € A,
direct all edges irF from A to I, and add a sink nodewith edges(i, t) from all i € I with capacitye;.

Let f,; € {0,1} be the flow on edgéq, 7) in this max flow (since all the capacities are integers, we may
assume that the resulting flow is integral|[18]). For easeotdition, we sayf,; = 0 if edge(a,i) ¢ E.

Online Algorithm.When an impressioif € D(:) arrives online, we choose a randoma@diccording to
the distribution defined by the flow; i.e., the probabilityabfoosinga’ is f;— (Note that ify ", fai < e;
there is some probability that nd is chosen.) It is already taken, we do not mat¢ko any adl

BoundingALG. The performance of this algorithm is easily characterizéth igh probability in terms

of the computed max-flow. Defing, = 3" f,;, and note thaf;, € {0, 1}, this indicates whether ad
was chosen in the max flow. Let* = {a € A : F, = 1}. When an impression € I arrives online,

a particular adz : f,; = 1 has probabilityl/e; of being chosen by the online algorithm; since each
impressioni has probabilitye; /n of arriving, we conclude that eaehe A* has probabilityl /n of being
chosen by the online algorithm upon each arrival. Thus, tmbdhe total number of ads chosen we have a
balls-in-bins problem wit: balls andn bins, and we are interested in lower-bounding the numbeinsf b
(among a subset of sizel*|) that have at least one ball. Applying concentration resfalt balls-in-bins
(Factl), we get that with probability — e=*"), ALG > (1 — 1)|4*| — en.

BoundingOPT. To bound the optimal solution, we will construct a cut in tiealization graphz =
(A, I, E) using a min-cut ofy'; (constructed using the max-flow found by the algorithm) aguade.” Let
(S,T) be amins—t cut in the graphG ¢ using the canonical “reachability” cut ii¢; i.e., S is defined as
the set of nodes reachable franusing paths in the residual graph after sending the ffdeund by the
algorithm. This is always a min-cut.[18] Lets = A N S and definedr, Is and I similarly.

We claim that there are no edgeshnfrom Ag to Ir; suppose there is such an edgei). Then,a
much be reachable fromsincea € S, buti must not be reachable sinée T'. This implies that there is
no residual capacity alon@, i); i.e., fo; = 1. However this also implies that there is no residual capacit
along (s, a) since(s, a) is the only edge entering and it has capacity, and that there is no other flow
leavinga. This implies that is not reachable in the residual graph, a contradiction.sTha only edges
in the cut(S,T") are froms to Ay (capacity 1) and from € Ig to ¢t (capacitye;). We may conclude using

max-flow min-cut thatA*| = > F, = [Ar[ + > ¢/, €

8Clearly, making an arbitrary available match is always asig@nd in some cases better) than doing nothing; we prdsent t
algorithm this way for ease of presentation.



Now consider the “realization” grapi = (4, I, E), and define a max-flow instan€g; whose solu-
tion has size equal to the maximum matchingﬁini.e., create a sourcewith edges to alb € A, direct
edges of” toward, and create a sinkwith edges from ali’ € I. Set the capacity of every edge to one.
Note that anys—t cut in Gy is a bound orOPT.

We define ans—t cutin (S, 7)) in G as follows. Letls = Ujer,D(i) and It = U;ez, D(i). Define
S = AgUlIgsandT = A7 U Ir. Note that since there are no edges frdmto I7 in G, there are also no
edges fromAg to I in G;. Thus the size of the cytS, 7') is equal to|Is| + | Ar|. An online impression
ends up in the sdltg with probabilityziels e;/n, independent of the other impressions. Using a Chernoff
bound, we can conclude that for any> 0, with probability 1 — e=2(") (over the scenarios), the size of
the cut (and therefor@PT) obeysOPT < |Ap| + >,/ e +en = |A*| + en.

Tightness of the Analysi€onsider a special case of the online matching proliléé D, n) wheree; = 1
for eachi € I and the underlying grapfi is a complete bipartite graph. The algorithm will find a petfe
matching betweerd and A, and so each ad is matched with probability at Iaast%. Using Fact1L, the
algorithm achieves: (1 — %)n with high probability. However, the optimum is Therefore:

Theorem 4. The approximation factor of threuggested matchirgjgorithm is1 — % with high probability,
and this is tight, even in expectation.

4.2 “Two Suggested Matchings” (TSM) Algorithm: Beating1 — % To improve upon theuggested
matchingalgorithm, we will instead usevo disjoint (near-)matchings to guide our online algorithno. T
find these matchings, we boost the capacities of the flow graphithen decompose the resulting solution
into disjoint solutions. The second solution allows to tedk thel — % barrier and prove:

Theorem 5. For any e > 0, with probability at leastl — e~ as long asOPT = Q(n), thetwo
suggested matchingdgorithm achieves approximation ratio

ALG 1-3 .
m—ﬁ 2 a::% ~ 0.67029 > 1_E

Moreover, this ratio is tight; specifically, there is a fagndf instances for which thisvo suggested match-
ingsalgorithm has expected approximation factor at mest .

Throughout the section, until the final proof of Theollem 5,assume:; = 1 for all 7 € I, which also
impliesm = n. Extending to integee; is a simple reduction to this case.

4.2.1 The TSM Algorithm. In this algorithm, we construct laoosted flow grapld;, built from G in
the standard reduction of matching to max-flow; i.e., creamurces with edges to alk € A, direct
the edges of~ towards nodes i, and create a sinkwith edges from ali € 7. However, we set the
capacities of the edges differently than in the max-flow otida: (i) Edges(s,a) from the source get
capacity 2, (i) edgesa, i) € E get capacity 1, and (iii) edge€s, t) from I to t get capacity 2.

We find a max-flow in this graph from to ¢. Since all the capacities are integers, we may assume
that the resulting flow is integrdl [18]. Léi; be the set of edges:, i) C £ with non-zero flow on them,
which must be unit flow. Since the capacities of edges) and (i, ¢) are all 2, we know that the graph
induced byE/ is a collection of paths and cycles. Using this structure agggn colors blue and red to
the edges of/; as follows:

e Color the cycle edges alternating blue and red.
e Color the edges of the odd-length paths alternating bluaeadwvith more blue than red.

6



e For the even-length paths that start and end with nadesA, alternate blue and red.

e For the even-length paths that start and end with impressien/, color the first two edges blue,
and then alternate red, blue, red, blue, etc., ending in blue

Note that all; € I are incident to either no colored edges, one blue edge, areadnid a red edge.

The TSM algorithm for serving online ad impressions is senglor eachi € I, the first timei arrives
try the blue edge; the second timarrives try the red edge. More formally, for ale I maintain a count
x; of the number of impression$ € D(i) that have arrived so far. Whehe D(i) arrives: ifz; = 0, set
a’ to be the ad alongs blue edge (ifi has a blue edge); if; = 1, seta’ to be the ad alongs red edge (if
1 has ared edge). Now assigto o’ if o’ is unassigned. If thig’ is already assigned, orif; > 1, do not
make an assignmeiit.

4.2.2 Performance of the TSM Algorithm. To analyze the performance of this algorithm, we first
derive a lower bound on the number of ads assigned duringithefrthe algorithm. We do so in terms of
the incidence pattern of the different ads with respectécetitges”;. Specifically, letAgr be the ads that
are incident to a blue and a red edge, aliglbe the ads that are incident to only a blue edge. Similarly
defineAgg and Ag. We have

‘Ef’ = 2AgR + 2A4BB + A + Ag. (1)

Consider some € Ap with blue edgga, 7). The event that is ever chosen is exactly the event that some
i’ € D(7) is ever drawn fronD, since then we will choose(and no other impression will choosg Since

e; = 1, this is exactly the probability that a particular bin is rempty in a balls-in-bins problem with
n balls (the online impressions), and = n bins (the impression typeg. Applying Fac({l, we get that
with high probability the number of ads chosen frety is at least Ag|(1 — %) — en. Now consider some

a € Apg With blue edg€a, i) and red edgéa, i,.). If |D(ip)| > 1, orif |D(i,)| > 2, thena will definitely

be chosen. Thus we can apply Fadt (2) withballs, m = n bins, ¢ = 2, bin sequences equal to the
neighborhood sets ofgr along the blue and red edges (ordered blue, rkeh 2 (since each impression is
incident to at most 2 edges éf;), andR set to the second (red) bin of the bin sequence. We conclade th
with high probability, the number of ads chosen freipg, is at least Apr|(1— e%) —en. Similar reasoning
gives bounds with coefficients ¢f — e%) for Agp and(1 — 2) for Ag. We may conclude that with high
probability (over the scenariosALG > (1—%)[Agp|+(1— 2)|Apr|+(1—2)|Ap|+(1—2)|Ag| —4en.
Note that sinceAp| > |Ag|, we can also assert

ALG > (1— e%)ABB—i-(l— e%)ABR—i-(l— %)(AB—FAR) — 4en. (2)

4.2.3 Bound on the optimal solution.Let (S,7") be a particular mirs —¢ cut of the flow graphG's
defined as follows. First start with the canonical “reachighbimin s—t cut of the flow graphG';, where
S is defined as the set of nodes reachable fromthe residual grapld7; left after finding the max-flow
E;. Then, we do a small bit of “surgery” to this cut: for alic I NT, if 4 is incident to more than one
a € AN S, we move: over to.S. Note that this does not increase the value of the cut, sirceawe at
least 2 for the two edges fromd N S, and pay exactly 2 for the eddé ¢t). Let As = AN S, and define
Ar, Is andIp similarly. Let Es be the set of edges, i) € E that cross the cut (from s to Ir).

Some observationgi) We haveE; C Ey, since otherwise, if somg:, i) € E;5 has no flow across
it, theni would be reachable from, and would not be in the s&t. (And we did not introduce any such
edges in our surgery()i) All i« € I have at most one incident edgefij (follows from the surgery)(iii)

A slight improvement to this algorithm is to try to match adothe red edge if matching along the blue edge fails; we do not
make use of this in the analysis so we leave it out for clarity.



All ¢ € Ag have at most one incident edge/fy. To see this, suppose it had two such edges (it cannot
have more than 2 sincBs C Ey). Then, since: is reachable froms (since it is inS), it must have either
residual capacity frons directly, or residual capacity fronis; but it cannot have either, sings, a) is
saturated and both flow edges frengo to I7.

Let Ag, I5 be the ads and impressions, respectively, that are incideratiges inFs. We may conclude
from the observations above that the gragl, /5, E'5) induced byFE; is a matching. The min-cut af
is made up of the edgds;, the |Ar| edges froms to A (with capacity 2), and thes| edges fromig to
t (also capacity 2). Thus, by max-flow-min-cut, we have

|Ey| = 2(JA7| + Is]) + | Es|. (3)

We are interested in bounding the value of the optimal matchi the realization grapt’ = (A,f,E).
To do this, we will use the min-cytS, T") of the graphG ¢ as a “guide” to construct a (not necessarily min)
cut in a flow graph built fron, and prove a high-probability bound on the size of this cut.

More precisely, we Ie(?f be a directed version a, constructed as before with a source and a sink,
and edges correspondingd but now we put capacity 1 on all edges. Note that &ay cut in this graph
constitutes an upper bound @PT, the maximum matching ig/. We construct such a c(,7’) as
follows. We letlg = UicrsD(7) andi; = Uier, D(7). For the ads, we will use almost the same partition
(As, Ar) as inGy but we will perform some “surgery” on this partition as welet A5 C A; be the set
of adsa € A that are incident (irG') to somei’ € D(i) C Ir. Note thati € I5 and(a,i) € Ejs. We set
S':fsU(AS\AE) andT:fTUATUAg.

Now we will measure the size of the c{f, T') in G;. We pay 1 for each € Is, i € Ay andi € A%
But note that there are no edgesiin from A N S to I, since we got rid of them in our surgery. Thus we
haveOPT < |Ig| + |Ar| + |A%].

Using a Chernoff bound, with probability— e ~*(") we have|Is| < |Ig|+ en for anye > 0. To bound
|A}|, consider some € As, and the impressiohe I5 along the edgéa, i) in the matching As, I5, Es).
The ada appears i} iff impression: is drawn during the run of the algorithm. Thus we have a biaHs-
bins problem withn balls,m = n bins, uniform bin probabilities and a bin subset of sia¢|, and we are
concerned with an upper bound on the number of bins in thatetubat get at least one ball. Using Hdct 1
we may conclude that with high probabilityt| < (1 — 1)|Es| + en + O(1).

Summarizing the previous arguments, we get, for any 0, with probability 1 — e=2("), OPT <
[Is| + [Ar| + (1 — 1)|Es| + en. Applying Equations[(B) theri{1), we get

OPT < §|Ef|+ (53— 3)|Es| +en
= |Apr| + [Ass| + 5(|AB| + |AR]) + (5 — £)[Es| +en 4)

In order to use this bound a@PT together with the bound oALG in Equation 2, we must bound the
size of E5 in terms of the setsigr, Agg, Ag and Ag. The following lemma takes a deeper look at the
two matchings constructed by the algorithm, and their i@tahip to the min-cutS, T') in G, in order to
achieve this bound.

Lemma 1. |E5| < %|ABR| + %|ABB| + |AB| + %|AR|

Proof. It suffices to show that the inequality holds for every cot@egcomponent (path or cycles) of the
graph induced by”,;. We thus assume notationally that the graph induced pgonsists of a single such
connected component.

Consider an arbitrary pair of edgés; , i1 ), (a2,i2) € Es C Ey. Since the edges df; are indepen-
dent, (ay,41) and(az,i2) cannot occur consecutively in this component (path or ¢yele claim further

8



that (a1,71) and (a2, i2) must have at least two edges between them. Suppose not, tberfay, i1) is
in the component; but sinee, € Ag andi; € I (by the definition ofEs) we must havéas,i1) € Es,
contradicting the fact that the edgg’s are independent.

If the component is a cycle of leng#) we can use the reasoning above to conclude that there are at
most| £ | edges ofE; in the cycle. The ads in the cycle are alldisr and there are exactlfy of them.
Thus|Es| < 2|Agg|, which implies the inequality.

If the component is a path, we can conclude {iiaf < [%1 by the reasoning above—the worst case
is when the path starts and ends ivaedge. We have three cases for this path, depending on thg pari
of its length, and (in the case of even-length paths) whetls¢arts and ends id or /.

e For odd paths of length, by construction of the edge colors, we have one adg’rand% ads in
Apr. Thus|Es| < (g-‘ = [@ + %~| < %’ABR’ +1= %’ABR’ + ’AB‘.

e For even paths of length that start and end with ads, we haves| = 1, |Ag| = 1 and|Apr| =
k1. Thus|Es| < [£] = [248rl 4 27, we bound this using a case analysisdag| mod 3, as
follows: (i) If |Agr| = 0 mod 3 then we getEs| < 2|Agg| + 1. (ii) If |[Agr| =1 mod 3 then
we get|Es| < 2|Agg| + 3. (iii) If [Agr| =2 mod 3 then we getE;s| < 2|Agg|+ 2. In all cases
this is less thai |Agr| + 3 = 2|Agr| + |4| + 1|4r|.

e For even length paths that start and end in impressions, welHag| = 1 and|Agr| = % —1. As

in the previous case we can says| < [%1 = [@ + 21, and reason by the same case analysis
that|E5| is at most%ABR + % This is equal tO%ABR + %ABB- n

4.2.4 Proof of Theorem5.We first prove the approximation ratio fef = 1. The bounds in equa-
tions [2) and[(#) each hold with probability— ¢=*(") and so using a union bound they both hold with
probability 1 — e~ Using Lemma1L (ignoring thé in front of the Az) and Equation[{4), we get

9 4 1
JABR + (5 — §)ABB + (1 - g)(AB + Ag) + €'n.

4 2
OPT < (= — —
_(3 3e 3

SinceOPT = Q(n), we can choosé€ small enough such that when we apply Equatidn (2) (also u$jng
we may conclude

ALG , {1—% 1-%2 1-2 . 1-2
~——te>min{ +—5, —5, ¢ ¢ =min{.735...,.670...,.709... } = —5 =~ .670.
OPT 373 373 17 37 3

The tightness of this analysis is proved in Seclion 4.2.5.dfoitrary integerk;, we give a reduction
to the case; = 1. Given a set of instancE = (G, D, n), we reduce to a new instanté = (G',D’,n)
with e, = 1 by makinge; copies of each impression type Then, when an impression of typarrives
online, “name” it randomly according to one of its copies.eTsulting distributiorD’ is uniform over
the impression typeg in the new instance.

Let I be the impressions that are drawn fr@hin one run of the algorithm, and lét be the resulting
draws fromD’. By the arguments above, we achieve the desired bountlldi/OPT’ with high prob-
ability, whereOPT' is with respect ta’; however we hav®PT’' = OPT, since the realization graphs
G = (A, I',F)andG’ = (A, I, F) are in fact the same graph.

4.2.5 Tightness of the analysis for the TSM Algorithm.In this section we demonstrate a family of

instances for which the TSM algorithm achieves a factor rttebdqan%, thus showing that the
analysis in Sectionl4 is tight.



The family is parameterized by, which is the number of advertisers, the number of impressipes,
as well as the number of impression arrivals. We shall tatebe a multiple of 4. The set of advertisers
consists of the following parts: a sht of size; and, fori € [1, 7], advertisergu;, v;, w; }. The setl of
impressions consists of the following parts: a Beif sizey and, fori € [1, %], impressionsz;, y;, z; }.
DefineU = {u; : i € [1,n/4]}, and similarly,V,W, XY, Z. ThusA = KUU UV UW and
I=LUXUYUZ. Draws are from the uniform distribution dn

The edged” are as follows:(i) Fori € [1, %], the 6-cycle{u; — x; — v; — ¥y — w; — 2z; — u;}, (i) @
complete bipartite graph betwedénand X, and(iii) a complete bipartite graph betweérandV.

We now describe the max-flow and min-cutGfy found during the algorithm. The only edges with
(unit) flow are the edges of the 6-cycles, i.e., far [1, %], {u; — x; — v; — y; — w; — 2 — u;}. Thus all
vertices inU, V, W, X, Y and Z have a flow of 2 each, and the verticesiinand L. have a flow of0. The
reachability cut(S,T") obtained from this flow has = K U X UU UV U {s} (wheres is the source
vertex). The flow and the cut both have si%é Using Facfll, one can easily check that the algorithm
achieves the total matching size¥f(1 — 3) with high probability.

The following assignment can be made with high probabitty is a lower bound on OP{i) With
high probability there will b€} draws of impressions fronX (with repeats). These can be matched to the
7 advertisers ink’ (in any order). (i) With high probability there will be; draws of impressions from
L. These can be matched to tHeadvertisers if¥. (i) With high probability there will b1 — %)g
unique draws of impressions frolm (counting eachy; only once, even if it is drawn multiple times). For
every suchy;, its first draw is matched tg;, and the repeat draws gf are left unmatched. Similarly, with
high probability, there arél — %)% unigue draws of;’s, and these are matched to the correspondirsy
Thus, this assignment has sizer 2 + (1 — )2 = n(1— 4). This means that the TSM algorithm cannot
achieve a factor better than — %)/(3 — 2).

5 Concluding Remarks

Applying the insights to the display ads application. The approach of using the offline solution to

allocate ads online may be quite useful in practice becatmrie wne can invest some time offline to find

the guiding solutions, the online allocation has to be darg guickly in this application. One can use this
approach to model other objective functions such as fasrirequality of ad slots assigned to ads, which
may be solvable offline with some computational effort. Aesample, we elaborate on the extension of
our algorithm to the following problem. In the display adsimess, advertisers have “frequency caps;”
i.e., they do not want the same user to see their ad more timaa fxed (constant) number of times. We

can extend our approach here to gét-a 1/e approximation as shown in the appendix.

Generalizing the algorithm. One can generalize the two-matching algorithm té-afatching” algorithm
by computingk matchings instead of 2 matchings, and then using them oimliagprescribed order. We
can easily show that if the underlying expected gréapladmitsk edge-disjoint perfect matchings, the
approximation factor of such an algorithmlis- % ~ 0.72 and1 — 3 ~ 0.75 for k = 2 andk = 3
respectively, however fak = 3, we do not know how to generalize our result for to graphs. @ataral
question left open by this work is what constafk) is achieved by extending tb matchings, where
67 < (k) < .99.

Fractional version. A theoretical version of online stochastic matching probkhat may be of interest
is the case in whicle;’s are not necessarily integers, but arbitrary rational peirs. We observe the
analysis of the “one suggested matching” algorithm can Inegdized to this case, but do not know how
to generalize the analysis of the “two suggested matchialgsirithm. The details are in the appendix.
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A Ballsin Bins

In this part, we prove the concentration facts we used throupthe paper.

Fact[d. Suppose: balls are thrown inton bins, i.i.d. with uniform probability over the bins. L&tbe a
particular subset of the bins, anfl be a random variable that equals the number of bins fBrwith at
least one ball. With probability at leagt— 2¢—<"/2, for anye > 0, we have

1 1 1
IB(l—=-)—en< S <|B|(1—-+—)+en
e e en

Proof of Fac{1:We haveE[S] = Y, 51 — (1 — 1)™ and so using standard identities, we obtain

Y 1-e' < B[S SZl—e_l(l—l).

n
a€eB a€EB

Since S, as a function of the placements of theballs, satisfies the Lipschitz condition, we may apply
Azuma’s inequality to the Doob Martingale and obtain

Pr[|S — E[S]| > en] < 2e~™/2,

O

Fact[2. Supposen balls are thrown inton bins, i.i.d. with uniform probability over the bins. Let
B4, B, ..., By be ordered sequences of bins, each of sjz&here no bin is in more thad such se-
quences. Fix some arbitrary subsetC {1,...,c}. We say that a bin sequené®, = (by,...,b.) is
“satisfied” if

e at least one of its bing; with i ¢ R has at least one ball in it; or,
e at least one of its bing; with 7 € R has at least two balls in it.

Let.S be a random variable that equals the number of satisfied bjuesgces. With probability at least
1 — 2e=<"/2 we have

9IR| oIRI2
e ) —edn - e n—c?

12



Proof of Fac{2:First, we claim

ES] 2@(1— 2%:(1+ niz»

To see this, fix some bin sequenBg. The probability thatB,, is not satisfied is

n—|R’| n—c IR P
" map-RI(1_ € < _ ¢ < 2 ¢
> <‘R/’>]R].n (1 n) _RZC:R 1- - < (tv—5)

R'CR

The bound orE[S] follows by linearity of expectation. Now, consid8ras a function of the placements
of then balls. Moving one ball can affed by at mostd, since each bin is in at mogtsequences. Thus
we may apply Azuma’s inequality and obtain, foral 0,

Pr(|S — E[S]| > edn] < 2e~"/2.

B Details of the proof for Hardness Result

Consider the instance which consists of a large nurhloepies of 6-cycles, the uniform distribution on the
union of the impressions, amd= 3k. Let~1, 2, v3 andy, be the fraction of the cycles that receive2, 3
and more tharg impressions, respectively. We have (using a simple agpitaf Azuma’s inequality)
that with high probability,

1
o= 3/€E(1 — 3)‘%_1 o~ i

3k e3’
3k 1 3 4y 9
7= <2>k2(1 3% 263’
3k\ 1 3 g s 27
= —(1 kel
b <3>k3( 3% 6e3
Y+ = 1l=-m—7—7

For cycles that receive 1 or 2 impressions, we can assumédtiatAL.G and OPT match 1 or 2 ads,
respectively. As we are upper-boundiABALG/OPT], we may assume that on cycles that receive more
than 3 impressions, bothLG andOPT achieve 3 matches, which maximizes the contribution ofehes
cycles to the ratilA\LG/OPT.

For cycles that receive exactly 3 impressions, we have tme situation as in the single cycle above.
We assume wlog that arrives first and is matched to ad If the other two impressions are also bath
then bothAL.G andOPT match two adsd andc) for this cycle. If the other two impressions are bgth
we have tha LG matches at most two ads BOPT matches three. In all other scenarios, we assume that
both ALG andOPT match three ads. By a Chernoff bound, with high probability $cenarios$z, x, )
and(z,y,y) each happenr v3k/9 times.

Summarizing, we have argued that with high probability,

ALG  m+ 29 +3y +(2-5+3
OPT = i +2% 43y +(2-5+3-

)5 6e® —23

~ ~ .9898.
)’yg 663 — 22

©loo[©l~1

This establishes Theordr 3.
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C Non-integral Impression Arrival Rates

One natural extension of the online stochastic matchinglpro is the case in which;’s are not neces-
sarily integers, but arbitrary rational numbers. We obséinat the “Suggested Matching” algorithm, with
1-— %-approximation factor, easily generalizes to this caséolimvs: instead of computing a maximum
matching, we can compute a maximum flgfy,on the corresponding flow graph, and upon the arrival of
an impression, assign the impressianto an ada with probability f;,, i.e., proportional to the fractional
edge fromi to a. Given the total fractiont, on each adi, we can argue that this algorithm achieves
valuey" . 4 (1 — e~f=) with high probability. Moreover, one can show that optimuai mosty_,_ , F,
with high probability. As a result, the approximation factd the algorithm can be captured by the ratio
M_ZF“) where0 < F, < 1forall a € A. Since0 < F, < 1, we can characterize this bound as the
solutilgr? to the following mathematical program:

min Y0 4(1 - )

S.t. zaeAFa:]“
0<F,<1 Vaec A

This mathematical program can be solved analytically. @emghe vector® of valuesFy, ..., Fly)
in nonincreasing order of’s, and letf(®) = > ,.4(1 — e~f). For any vectorsp; and ®, sub-
ject to ||®||; = 1, if ®; majorizes®,, then clearlyf(®;) > f(®P»). Since the uniform vectop =

[1/|A],...,1/|A|] is majorized by all the vectord,(®) = |A|(1 — e~!/I4l) is the minimum value attain-
able. WhenA| = 1, f(®) = 1 — 1/e. We derive tha% =1—e VAl 4 )A|(—e VA x 1/|AP) =

1 — e V1Al —e=1/141/| Al Now, 1 — e~ /141 — ¢=1/141/|A| > 0 because multiplying by!/I4l, we get
eIl > 1+ 1/| A which follows from the Maclaurin series expansione®f Thus,df (®)/d|A] > 0 and
this implies that the solution to the mathematical prograatiained at — % Therefore, the approximation
factor of the algorithm is equal tb— % with high probability.

Generalizing the TSM algorithm to non-integes needs a proper decomposition of the flow on the
corresponding flow graph to two edge-disjoint flows each Veithe values. Unlike the integral case, such
edge-disjoint decomposition is not possible for the ndagare;'s and one need to exploit other ideas to
analyze the algorithm. We leave this as an open question.

D Frequency Capping

A useful generalization of the online matching problem ikatell-motivated by the ad allocation appli-
cation is when the advertisers have “frequency caps;”they do not want the same user to see their ad
more than some fixed (constant) number of times. We can réigangser as a “feature” of the impression;
i.e., that an “impression? as we've used it in this paper is in fact a pgiru), whereu is a particular user,
and we have a distribution that givesdjs,,), the expected number of impressions of each type from each
user. Also as part of the input, we are given, for each adesii, a total number of impressiong, and

a capc per user. We could also regard these caps as operating assiigor limits on other features, e.g.,
demographic or geographic.

Our1l — %—approximation algorithm (theuggested matchinglgorithm) from Section 411 is easily
extended to this generalization of the problem. Here we gisketch of this extension. For the algorithm,
we simply make another layéf of nodes in our max-flow computation, with one no@eu) for each
(advertiser, user) pair. We make edges from eaehA to this layer with capacity, and set the capacity
of the edge edgés, a) to d,. The algorithm proceeds as before, and one can easily shttwtlve same
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argument that the number of impressions matched 15(1 —1/e), whereF' is the value of the flow. Then,
by reasoning about the min-cut in this graph, with some sm@hsoning about where this new layer sits
in the min-cut, one can still show th&PT is bounded byF' with high probability, giving the desired
approximation ratio.

Interestingly, it is more challenging to generalize the T&Mgorithm. Setting the capacities 2,
and2, respectively, of the top and mid-layer edges does not weidkesired, since then the flow could be
spread among more thaly nodes in the middle layer.
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