
Using Interior Point Methods for Fast Parallel Algorithms forBipartite Matching and Related ProblemsAndrew V. Goldberg�Department of Computer ScienceStanford UniversityStanford, CA 94305Serge A. PlotkinyDepartment of Computer ScienceStanford UniversityStanford, CA 94305David B. ShmoyszSchool of Operations Research and Industrial EngineeringCornell UniversityIthaca, NY 14853�Eva TardosxSchool of Operations Research and Industrial EngineeringCornell UniversityIthaca, NY 14853March 1991�Research partially supported by NSF Presidential Young Investigator Grant CCR-8858097 with matching fundsfrom AT&T and DEC, IBM Faculty Development Award, a grant from 3M Corp., and ONR Contract N00014{88{K{0166.yResearch supported by NSF Research Initiation Award CCR900-8226 and by ONR Contract N00014{88{K{0166.zResearch partially supported by an NSF PYI award CCR-89-96272 with matching support from UPS, and SunMicrosystems, by Air Force contract AFOSR-86{0078, and by the National Science Foundation, the Air Force O�ceof Scienti�c Research, and the O�ce of Naval Research, through NSF grant DMS-8920550, as well the NSF PYIaward of the �rst author.xResearch supported in part by a Packard Research Fellowship and by the National Science Foundation, the AirForce O�ce of Scienti�c Research, and the O�ce of Naval Research, through NSF grant DMS-8920550 and by AirForce contract AFOSR-86{0078, as well as by the NSF PYI award of the �rst author.0

AbstractIn this paper we use interior-point methods for linear programming, developed in the contextof sequential computation, to obtain a parallel algorithm for the bipartite matching problem.Our algorithm �nds a maximum cardinality matching in a bipartite graph with n nodes andm edges in O(pm log3 n) time on a CRCW PRAM. Our results extend to the weighted bipartitematching problem and to the zero-one minimum-cost
ow problem, yieldingO(pm log2 n lognC)algorithms, where C > 1 is an upper bound on the absolute value of the integral weights orcosts in the two problems, respectively. Our results improve previous bounds on these problemsand introduce interior-point methods to the context of parallel algorithm design.1 IntroductionIn this paper we use interior-point methods for linear programming, developed in the context of se-quential computation, to obtain a parallel algorithm for the bipartite matching problem. AlthoughKarp, Upfal, and Wigderson [6] have shown that the bipartite matching problem is in RNC (seealso [12]), this problem is not known to be in NC. Special cases of the problem are known to be inNC. Lev, Pippenger, and Valiant [9] gave an NC algorithm to �nd a perfect matching in a regularbipartite graph. Miller and Naor [10] gave an NC algorithm to decide whether a planar bipartitegraph has a perfect matching.The best previously known deterministic algorithm for the problem, due to Goldberg, Plotkin,and Vaidya [4], runs in O�(n2=3) time on graphs with n nodes, where an algorithm runs in O�(f(n))time if it runs in O(f(n) logk(n)) time for some constant k. In this paper we describe an O�(pm)algorithm to �nd a maximum cardinality matching in a bipartite graph with m edges, which isbased on an interior-point algorithm for linear programming and on Gabow's algorithm [3] foredge-coloring bipartite graphs. For graphs of low-to-moderate density, this bound is better thanthe bound mentioned above.The results presented in this paper extend to the maximum-weight matching problem and tothe zero-one minimum-cost
ow problem. The resulting algorithms run in O�(pm logC) time,where C > 1 is an upper bound on the absolute value of the integral weight and costs in the twoproblems, respectively. The best previously known algorithm for the zero-one minimum-cost
owproblem runs in O�((nm)2=5 logC) time [4]. The new algorithm is better for both the zero-onemaximum
ow and the zero-one minimum-cost
ow problems for all graph densities.Interior-point algorithms work as follows. The algorithm starts with a point in the interior ofthe feasible region of the linear program and its dual that is close to the so-called central path. Inits main loop, the algorithm moves from one interior point to another, decreasing the value of theduality gap at each iteration. When this value is small enough, the algorithm terminates with aninterior-point solution that has a near-optimal value. The �nish-up stage of the algorithm convertsthis near-optimal solution into an optimal basic solution.Karmarkar's revolutionary paper [5] spurred the development of the area of interior-point linearprogramming algorithms, and many papers have followed his lead. Karmarkar's algorithm runs in1

O(NL) iterations, where N and L denote the number of variables and the size of the linear program,respectively. Renegar [15] was the �rst to give an interior-point algorithm that runs in O(pNL)iterations. Since then, several di�erent O(pNL)-iteration algorithms have been developed. For anoverview of work on interior-point algorithms, the reader is referred to the survey paper of Todd [17].The matching algorithm discussed in this paper is based on an algorithm due to Monteiro andAdler [11], though similar algorithms can also be based on other O(pNL) iteration algorithms.Interior-point algorithms have proved to be an important tool for developing e�cient sequentialalgorithms for linear programming and its special cases. In this paper we apply these tools in thecontext of parallel computation. For the purpose of parallel computation, an important fact is thatthe running time of an iteration of an interior-point algorithm is dominated by the time requiredfor matrix multiplication and inversion. Therefore, an iteration of such an algorithm can be doneO(log2N) time on a CRCW PRAM using N3 processors [13].The interior-point method used here follows a central path in the interior of the feasible region.After every pN iterations, this algorithm has decreased the duality gap by a constant factor.The bipartite matching problem can be formulated as a linear program with an integral optimumvalue. Therefore the size of the maximum matching is known as soon as this gap is below one.Furthermore, the gap between the value of an initial solution and the optimal value is at mostN . This suggests that an interior-point algorithm can be used to �nd the value of the maximummatching in a bipartite graph in O(pm logn) iterations, or O�(pm) time. In this paper we developan algorithm running in this time bound that �nds a maximum matching as well as its value.To �nd a maximum matching we need to overcome two di�culties. First, we need to �nd aninitial interior point and dual solution that is close to the central path and has a small dualitygap, so that the number of iterations will be small. The second di�culty comes from the fact thatstandard implementations of the �nish-up stage of interior-point algorithms either are inherentlysequential or perturb the input problem to simplify the �nish-up stage, increasing the numberof iterations of the main loop by an
(n) factor. For the special case of the bipartite matchingproblem, we give a parallel implementation of the �nish-up stage that runs in O(log2 n) time usingm processors. This implementation is based on Gabow's edge-coloring algorithm [3].Our techniques apply to the more general maximum-weight matching problem. The algorithmand its analysis are only slightly more involved. For brevity we focus on the more general case.The results for the maximum matching problem are obtained as a simple corollary of the resultsfor the maximum-weight matching problem. The main loop of our maximum-weight matchingalgorithm runs in O(pm log2 n lognC) time and uses m3 processors, and the �nish-up stage runsin O(logn lognC) time and uses m processors. Therefore, the algorithm runs in O�(pm logC)time. A standard reduction between the weighted matching and the zero-one minimum-cost
owproblems (see e.g., [1, 6]) gives an O�(pm logC) algorithm.This paper is organized as follows. Section 2 introduces de�nitions and terminology usedthroughout the paper and reviews the Monteiro{Adler linear programming algorithm. Section 32

gives a linear programming formulation of the bipartite matching problem that has an initial in-terior point close to the central path with a small duality gap, and shows how to use the linearprogramming algorithm to obtain a near-optimal fractional matching. Section 4 describes a parallelprocedure that, in O�(logC) time, converts the near-optimal fractional matching into an optimalzero-one matching. Section 5 contains concluding remarks.2 PreliminariesIn this section we de�ne the matching problem and the linear programming problem, and re-view some fundamental facts about them. For a detailed treatment, the reader is referred to thetextbooks by Papadimitriou and Steiglitz [14] or Schrijver [16]. We also give an overview of theMonteiro{Adler algorithm.The bipartite matching problem is to �nd a maximum cardinality matching in a bipartite graphG = (V;E). The maximum-weight bipartite matching problem is de�ned by a bipartite graphG = (V;E) and a weight function on the edges w : E �! R. We shall assume that the weightsare integral. The weight of a matching M is Pe2M w(e). The problem is to �nd a matching withmaximum weight.We use the following notation and assumptions. Let G = (V;E) denote the (bipartite) inputgraph, let n denote the number of nodes in G, let m denote the number of edges in G, and let Cdenote the maximum absolute value of the weights of edges in G. To simplify the running timebounds, we assume, without loss of generality, that m � n � 1 > 1, and C > 1. We denote thedegree of a node v by d(v), and the set of edges incident to node v by �(v). For a vector x, we letx(i) denote the ith coordinate of x. We use a PRAM [2] as our model of parallel computation.Consider the following standard linear programming formulation of the bipartite matching prob-lem. Matching-1: maximize wtfsubject to: Pe2�(v) f(e) � 1; for v = 1; : : : ; n;f � 0:A feasible solution to the system of the linear inequalities above is called a fractional matching. Wedenote an optimal solution of the linear program by f�.The constraint matrix of Matching-1 is the node-edge incidence matrix of the bipartite graphG. A matrix is totally unimodular if all of its submatrices have determinants +1, -1 or zero. Itis well known that the node-edge incidence matrix of a bipartite graph is totally unimodular [14].This implies the following theorem.Theorem 2.1 [14] Any optimal solution of the linear programMatching-1 is the convex combinationof maximum-weight matchings. An optimal value of this linear program is equal to the maximumweightof a matching. 3

The Monteiro{Adler algorithm handles linear programs in the following form:Primal LP: minimize ctxsubject to: Ax = bx � 0where A is a matrix, and b, c, and x are vectors of the appropriate dimensions. We assume that thematrix A and the vectors b and c are integral. We use N to denote the number of variables in the(primal) linear programs we consider. A vector x is a feasible solution if it satis�es the constraintsAx = b and x � 0. A feasible solution x is optimal if it minimizes the objective function value ctx,and interior point if it is in the interior of the nonnegative orthant.The linear programming duality theorem states that the minimum value of the Primal LP isequal to the maximum value of the following Dual LP:Dual LP: maximize bt�subject to: At� + s = cs � 0where � and s are the variables of the Dual LP, the dimension of � is equal to the dimension of b,and the dimension of s is equal to the dimension of x. Feasible and optimal solutions and interiorpoints for the dual problem are de�ned in the same way as for the primal problem.Let x be a feasible solution to the Primal LP, and let (�; s) be a feasible solution to the DualLP. The value ctx is an upper bound and bt� is a lower bound on the common optimal value ofthe two problems. Hence the di�erence ctx� bt� = stx measures how far the current solutions arefrom being optimal. This quantity is called the duality gap. The central path of this pair of linearprograms is de�ned as the set of points with s(i)x(i) identical for every i, i = 1; : : : ; N . Notice thatthe complementary slackness conditions state that the pair of primal and dual solutions is optimalif these products are all zero.The Monteiro{Adler algorithm is applied to a pair of primal and dual linear programs in theabove form. The algorithm starts with a vector (x0; �0; s0), where x0 and (�0; s0) are interior pointsof the primal and dual linear problems, that are in some sense close to the central path. At eachiteration of the main loop, the algorithm moves from the current interior point to another interiorpoint, so that the duality gap is decreased by a factor of (1�
(1=pN)) every iteration.The measure of closeness to the central path required by the algorithm is de�ned as follows.Consider a primal{dual solution pair (x; �; s). De�ne � = stx=N , and de�ne the vector � such that�(i) = s(i)x(i) for i = 1; : : : ; N . The solution pair is close to the central path if jj� � �1jj � ��,where 1 denotes the vector with all coordinates 1, jj � jj denotes the Euclidean norm, and � is 0:35,as suggested by Monteiro and Adler.Monteiro and Adler prove the following theorem.4

Theorem 2.2 [11] If we have an initial solution (x0; �0; s0) that is close to the central path, thenfor any constant � > 0, after O(pN log(st0x0)) iterations the duality gap stx of the current solution(x; �; s) is at most �.To get the algorithm started, one has to provide an initial solution (x0; �0; s0) that is close tothe central path. Monteiro and Adler present a way to obtain an equivalent linear programmingformulation with such an initial solution. In the next section we give a slightly simpli�ed versionof this construction for the bipartite matching problem, for which the initial solution also has asu�ciently small duality gap.3 Finding a Near-Optimal SolutionIn this section we show how to convert the Matching-1 linear program into a linear program thatis in the form required by the Monteiro{Adler algorithm and has an initial solution close to thecentral path with a small duality gap. Then we show how to compute a near-optimal fractionalmatching from the initial solution to this linear program.We restate the matching problem as follows:Matching-2: minimize �wtf + N2Cn�1 zsubject to: Xe2�(v)f(e) + (n� d(v))g(v)� z = 1; for v = 1; : : : ; n;1tf + 1tg + y = n+m+ 1; (�)f; g; z; y � 0:We denote the objective function of this linear program by the vector c, and coe�cients of the left-hand-side of the constraint (�) by the vector a. The number of variables in this linear program ism+n+2 = N . We denote a feasible solution toMatching-2 by x = (f; g; y; z), and a feasible solutionof the corresponding dual problem by � and s, where �(i), for i = 1; : : : ; n, is the dual variablecorresponding to the primal constraint for node i, and �(n+ 1) is the dual variable correspondingto the constraint (�).Intuitively, the transformation works as follows. Variables g(v) are the slack variables introducedto replace inequality constraints by equality constraints. The positive multipliers (n � d(v)) scalethe slack variables so that there is a feasible solution with all original and slack variables equal.The coe�cient of z in the objective function is large enough to guarantee that z = 0 in an optimalsolution. The variable z is introduced to make it possible to have a starting primal solution withcoordinates of f , g and y equal (for example, to 1). The constraint (�) does not a�ect the primalproblem since y is not in the objective function and, as we have just mentioned, in an optimalsolution z = 0 and therefore gt1 + f t1 � n is automatically satis�ed. This constraint, however,allows us to obtain an initial solution for the dual problem such that the dual slack variablescorresponding to the primal variables f , g and y roughly equal. This will imply that the startingsolution is close to the central path. 5

Lemma 3.1 If (f; g; y; z) is an optimal solution of Matching-2, then f is an optimal solution toMatching-1.Proof : Every solution to Matching-1 can be extended to a solution to Matching-2 with z = 0; thisfollows from the fact that both f and the slacks in Matching-1 are at most 1.Next we have to show that every optimal solution to Matching-2 has z = 0. Consider a feasiblepoint x1 = (f1; g1; z1; y1) with z1 6= 0. Since f1 satis�es Pe2�(v) f1(e) � 1 + z1 for every nodev, decreasing f1 on some edges, by a total of at most z1n, converts f1 into a vector f2 that is afractional matching. Above we observed that any fractional matching can be extended to a feasiblesolution of Matching-2. Let x2 denote a feasible solution extending f2. If we replace x1 by x2,the decrease in the objective function value caused by the reduction in z is z1N2Cn�1 > z1NC. Theincrease due to the change in f is bounded by z1nC < z1NC. Therefore, the value ctx2 is smallerthan ctx1, which implies that any optimal solution must have z = 0.We de�ne initial primal and dual solutions as suggested by the above discussion. The initialprimal solution x0 is de�ned by f = 1; g = 1; y = 1; z = n� 1:The initial dual solution (�0; s0) is de�ned by�(i) = 0; for 1 � i � n;�(n+ 1) = �N2C;s(i) = c(i) +N2Ca(i) for 1 � i � N:Lemma 3.2 The vectors x0 and (�0; s0) are interior-point solutions of the primal and the dual problemsthat are close to the central path, and the value of the duality gap is O(N3C).Proof : It is easy to verify that x0 is a primal solution, and (�0; s0) is a dual solution. Recall thatN = n +m+ 2. The duality gap iss0tx0 = nN2C +mN2C � wt1+ 2N2C = N3C � wt1 = O(N3C)as required.Next we have to verify that the initial solution is close to the central path. Let � = st0x0=N =N2C � (wt1=N), and de�ne the vector � with coordinates �(i) = s(i)x(i). Consider �(i)� � foreach type of variable separately. For variables s(i) and x(i) corresponding to z; y; and g, we getj�(i)� �j = js0(i)x0(i)� �j = jwt1=N j:For variables s(i) and x(i) corresponding to f , we getj�(i)� �j = js0(i)x0(i)� �j = jwt1=N � w(i)j:6

Using these values we get thatjj�(i)� �jj2 � N(wt1=N)2 +Xi w2(i) � 2NC2:Since N � 3, we have that 2NC2 � �2(N4C2 � 2NCwt1) � (��)2. This proves the lemma.Now we are ready to give the O�(pm logC)-time algorithm to compute the weight of an optimalmatching and to �nd a near-optimal fractional matching. In the next section we show how to convertsuch a near optimal fractional matching into an optimal matching.Lemma 3.3 A fractional bipartite matching with weight at most 1=2 less than the weight an optimalmatching can be computed in O�(pm logC) time on a PRAM with m3 processors.Proof : By applying Lemma 3.2 and Theorem 2.2 (with � = 1=4), we see that afterO(pN log(NC)) =O(pm log(nC)) iterations of the LP algorithm, we have obtained a point (x; �; s) with a dualitygap xts � 1=4. Hence we have�wtf + N2Cn � 1z + wtf� � 14 ; (1)where f� is an optimal solution toMatching-1. Since z � 0, this implies that wtf��wtf � 1=4. Asin Lemma 3.1, we can argue that f can be converted to a feasible solution of theMatching-1 problemby decreasing its value on some of the edges by a total of at most zn. Therefore, wtf� � wtf�znC.From (1), this implies that zN2Cn�1 � 1=4 + znC. Thus,z � n � 14C(N2� n2 + n) < 14mC:Now round all values of f and g down to have a common denominator 4mC, and denote the roundedsolution by f1; g1. Clearly, wtf��wtf1 � 1=4+ (mC)=(4mC)� 1=2. After the rounding, we have:Xe2�(v) f1(e) + (n� d(v))g1(v) � 1 + zThe left-hand side is an integer multiple of (4mC)�1 and z < (4mC)�1. This implies thatXe2�(v) f1(e) + (n� d(v))g1(v) � 1Hence, the resulting vector f1 is a fractional matching whose weight is within 1=2 of the optimum.Corollary 3.4 The cardinality of the maximum matching in a bipartite graph can be computed inO�(pm) time using m3 processors. 7

4 The Finish-Up StageIn the previous section we have shown how to compute, in O�(pm logC) time, a fractional bipartitematching with weight at most 1=2 less than the optimum. In this section we give an O�(logC)algorithm for converting any such fractional matching into a maximum-weight matching. Note thatfor the unweighted bipartite matching, this algorithm runs in polylogarithmic time.Let f be a fractional bipartite matching that has weight at most 1=2 less than the maximumweight, and let f� denote a maximum weight-matching. First we construct a fractional matchingf 0, such that the values of f 0 have a relatively small common denominator that is a power of twoand the weight of f 0 di�ers from the maximum weight by less than 1. De�ne � by� = 2dlogmCe+1:By de�nition, � is a power of 2 and � = O(mC). Let f 0 be the fractional matching obtained byrounding f down to the nearest multiple of 1=�. Note thatjwtf � wtf 0j < mC� = mC2dlogmCe+1 < 12 :Therefore wtf� � wtf 0 < 1.Consider a multigraph G0 = (V;E 0) with the edge set containing � � f 0(e) copies of e for eache 2 E, and no other edges.Lemma 4.1 For any coloring of the edges of G0 with � colors, there exists a color class which is amaximum-weight matching of G.Proof : The proof is by a simple counting argument. The sum of the weights of the color classesis equal to �wtf 0 > �(wtf� � 1). Since there are � color classes, at least one of them has weightabove wtf� � 1. The claim follows from the integrality of w.The above lemma implies that, in order to �nd a maximum-weight matching, it is su�cient toedge-color G0 using � colors. Since G0 is bipartite graph and its maximum degree is bounded by�, which is a power of 2, we can use a parallel implementation of Gabow's algorithm [3] to edge-color G0 using � colors. However, G0 has O(mC) edges and therefore the algorithm uses
(mC)processors. In order to reduce the processor requirement, we use a somewhat di�erent algorithm.The algorithm does not use an explicit representation of the multigraph, but rather uses a weightedrepresentation of a simple graph. A divide-and-conquer approach is then used to split the (implicit)multigraph so that the bound on the maximum degree of a note is halved, and then recurses on thepart with greater weight. A subroutine for �nding such a partitioning is also the basis of Gabow'sedge-coloring algorithm.Figure 1 describes the algorithm to �nd a maximum-weight matching given a near-optimalfractional matching. The algorithm starts by rounding the fractional matching to a small common8

procedure Round(E; f);� 2dlogmCe+1 ;f 0 f rounded down to a common denominator of �;d0 �;while d0 > 1 do beginE0 fe j e 2 E; d0 � f 0(e) is oddg;(E1; E2) Degree-Split(V;E0);W1 w(E1);W2 w(E2);if W1 � W2then beginfor e 2 E1 do f 0(e) f 0(e) + 1=d0;for e 2 E2 do f 0(e) f 0(e) � 1=d0;end;else beginfor e 2 E2 do f 0(e) f 0(e) + 1=d0;for e 2 E1 do f 0(e) f 0(e) � 1=d0;end;d0 d0=2;end;return (fe j f 0(e) = 1g)end. Figure 1: Rounding an approximate fractional matching to an optimal integral onedenominator as described above. A fractional matching f 0 with common denominator �, canbe written as f 0 = 12(f1 + f2) such that both f1 and f2 are fractional matchings with commondenominator �=2. On edges with �f 0(e) even we can set f1(e) = f2(e) = f 0(e). Otherwise weset f1(e) = f 0(e) + 1=� and f2(e) = f 0(e)� 1=� or the other way around. Whether to add or tosubtract 1=� on these edges is decided with the help of the procedure Degree-split. This procedurepartitions the edges of a bipartite graph G0 = (V;E0) into two classes E1 and E2, so that for everynode v, the degree of v in the two induced subgraphs di�ers by at most one. The procedure is usedfor the graph on V with edges E0 = fe 2 E : �f 0(e) is odd:g. To obtain f1 we increase f 0 on onecolor class and decrease it on the other one. Both f1 and f2 are fractional matchings with commondenominator �=2. Now f 0 is replaced by f1 or f2 depending on which one has larger weight.This process is iterated O(log(mC)) times, until the current fractional matching is integral. Theresulting matching has an integral weight that is more than wtf� � 1, and therefore the matchingis optimal.The heart of the algorithm is the procedure Degree-Split described in Figure 2. This proceduredecomposes the graph into cycles and paths, such that at most one path ends at each node. Thiscan be accomplished by pairing up the edges incident to each node separately. Then we two-colorthe paths and cycles separately. This gives a two-coloring of the graph where the di�erence in thedegree of a node in the two subgraphs is at most 1.9

procedure Degree-Split(V;E);Construct a new node set V 0 by replacing each node v 2 V by an independent set of size dd(v)=2e;For each node in V , assign its incident edges to nodes in V 0, so that each node v in V 0 has d(v) � 2;Edge-color the resulting graph using two colors;Return the edges of each color class;end. Figure 2: Splitting the maximum degree of the graphLemma 4.2 The algorithm Round produces a maximum-weight matching.Proof : Consider the parameter d0 used in the algorithm in Figure 1. Initially d0 = �. Note thatafter iteration i we have d0 = �=2i. We show by induction that after iteration i:� f 0 is a fractional matching,� wtf 0 > wtf� � 1,� coordinates of f 0 have common denominator d0.Initially all three conditions are satis�ed. Assuming that all three conditions are satis�ed afteriteration i� 1, we prove that they remain satis�ed after iteration i. Let d1 and f1 denote d0 and f 0before iteration i and let d2 and f2 denote d0 and f 0 after iteration i.The last claim follows from the fact that the coordinates of f1 that are odd multiples of 1=d1are adjusted by plus or minus 1=d1 in this iteration, and so all coordinates of f2 are even multiplesof 1=d1, and hence multiples of 1=d2.The second claim follows from the fact that the components of f2 that have been increasedcorrespond to edges of greater total weight than those that have been decreased.Now consider the �rst claim. By the inductive assumption,Pe2�(v) f1(e) � 1. By the de�nitionof Procedure Degree-split,Pe2�(v) f2(e) �Pe2�(v) f1(e) + 1=d1 � 1 + 1=d1. However, we have seenalready that f2 has a common denominator of d2. Hence, Pe2�(v) f2(e) is an integer multiple of1=d2 = 2=d1 and is therefore at most one.After log� iterations we construct an f 0 that is integral and whose weight is above wtf� � 1.By integrality of w, the set of edges where this f 0 is 1 is the desired maximum-weight matching ofthe input graph.Lemma 4.3 The procedure Degree-Split partitions the input graph into two graphs with disjoint edge-sets, such that the degrees of any node v in the two graphs di�er by at most one. The procedure canbe implemented in O(logn) time. 10

Proof : Observe that the graph constructed on V 0 is bipartite, and the degree of a node is at mosttwo. Therefore the graph consists of paths and even cycles. Hence it can be two edge-colored inO(logm) time using m processors [7, 8]. The claim of the lemma follows from the fact that eachnode v 2 V is an end point of at most one path.Lemma 4.4 The algorithm Round runs in O(logn lognC) time using m processors.Proof : The number of iterations of the loop of the algorithm is O(log�) = O(lognC), because dis halved at each iteration. The running time of each iteration is dominated by Degree-Split, whichtakes O(logn) time by Lemma 4.3.Theorem 4.5 A maximum-weight bipartite matching can be computed in O�(pm logC) time usingm3 processors.Note that the exact running time of our algorithm on a CRCW PRAM is O(pm log2 n lognC),which is the time required to approximately solve the linear program.Corollary 4.6 A maximum cardinality bipartite matching can be computed in O�(pm) time usingm3 processors.5 Concluding RemarksInterior-point methods have proved to be very powerful in the context of sequential computation.In this paper we have shown an application of these methods to the design of parallel algorithms.We believe that these methods will �nd more applications in the context of parallel computation.We would like to mention the following two research directions.One direction is to attempt to generalize our result to general linear programming, showing thatany linear programming problem can be solved in O�(pNL) time. This would require a parallelimplementation of the �nish-up stage of the algorithm that runs in O�(pNL) time. A relatedquestion is whether the problem of �nding a vertex of a polytope with the objective function valuesmaller than that of a given interior point of the polytope is P -complete.The other direction of research is to attempt to use the special structure of the bipartite match-ing problem to obtain an interior-point algorithm for this problem that �nds an almost-optimalfractional solution in less that O�(pm) time; an O�(1) bound would be especially interesting, sincein combination with results of Section 4 it would imply that bipartite matching is in NC.11

AcknowledgmentsWe would like to thank an anonymous referee for very useful comments on an earlier version of thispaper.References[1] A. K. Chandra, L. Stockmeyer, and U. Vishkin. Constant depth reducibility. SIAM J. Comput.,13(2):423{439, May 1984.[2] S. Fortune and J. Wyllie. Parallelism in Random Access Machines. In Proc. 10th ACM Symp.on Theory of Computing, pages 114{118, 1978.[3] H. N. Gabow. Using Euler Partitions to Edge-Color Bipartite Multi-graphs. Int. J. Comput.Inform. Sci., 5:345{355, 1976.[4] A. V. Goldberg, S. A. Plotkin, and P. M. Vaidya. Sublinear-Time Parallel Algorithms forMatching and Related Problems. In Proc. 29th IEEE Symp. on Found. of Comp. Sci., pages174{185, 1988.[5] N. Karmarkar. A New Polynomial-Time Algorithm for Linear Programming. Combinatorica,4:373{395, 1984.[6] R. M. Karp, E. Upfal, and A. Wigderson. Constructing a Maximum Matching is in RandomNC. Combinatorica, 6:35{48, 1986.[7] R. E. Ladner and M. J. Fischer. Parallel pre�x computation. J. Assoc. Comp. Mach., 27:831{838, 1980.[8] C. Leiserson and B. Maggs. Communication-e�cient parallel graph algorithms. In Proc. ofInternational Conference on Parallel Processing, pages 861{868, 1986.[9] G. F. Lev, N. Pippenger, and L. G. Valiant. A Fast Parallel Algorithm for Routing in Permu-tation Networks. IEEE Trans. on Comput., C-30:93{100, 1981.[10] G. L. Miller and J. Naor. Flow in Planar Graphs with Multiple Sources and Sinks. UnpublishedManuscript, Computer Science Department, Stanford University, Stanford, CA, 1989.[11] R. D. C. Monteiro and I. Adler. Interior path following primal-dual algorithms. Part I: Linearprogramming. Mathematical Programming, 44:27{41, 1989.[12] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as easy as matrix inversion.Combinatorica, pages 105{131, 1987.[13] V. Pan and J. Reif. E�cient Parallel Solution of Linear Systems. In Proc. 17th ACM Sympo-sium on Theory of Computing, pages 143{152, 1985.[14] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complex-ity. Prentice-Hall, Englewood Cli�s, NJ, 1982.12

[15] J. Renegar. A Polynomial Time Algorithm, Based on Newton's Method, for Linear Program-ming. Mathematical Programming, 40:59{94, 1988.[16] A. Schrijver. Theory of Linear and Integer Programming. J. Wiley & Sons, 1986.[17] M. J. Todd. Recent developments and new directions in linear programming. In Mathemat-ical Programming: Recent Developments and Applications, pages 109{159. Kluwer AcademicPublishers, 1989.

13

