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Abstract

We study the online unweighted b-matching problem where at most

b > 1 requests can be matched to any server site. We present a deter-

ministic algorithm BALANCE whose competitive ratiois 1 — ﬁ We
b

show that the competitive ratio of every deterministic online algorithm

is at least 1 — ﬁ Hence, BALANCE is optimally competitive, in-
b

cluding low order terms. For large b, the competitive ratio of BALANCE

approaches 1 — % ~ .63.

1 Introduction

We consider the natural online version of the well-known b-matching prob-
lem on an unweighted bipartite graph G = (9, R, F'), where S and R are the
vertex partitions and F is the edge set. At the ¢th unit of time, 1 <1 < n,
the vertex r; € R and all the edges incident to r; are revealed to the online
algorithm A. A then must either decline to ever service r;, or irrevocably
select a site s; adjacent to r; in GG to service r;. No server site may be
used more than b times. Hence, it may well not be possible to service ev-
ery request. The goal of the online algorithm is to maximize the number
of requests that it services. We analyze this problem using the standard
competitive ratio. For this problem, the competitive ratio of an online algo-
rithm A is the supremum over all possible instances I, of the cardinality of
the matching constructed by A on I divided by the maximum cardinality
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matching in /. Note that the instance I specifies GG as well as the order in
which the r;’s appear.

As one example application, consider the problem of assigning client
computers to support stations studied by Grove, Kao, Krishnan and Vit-
ter [1]. In this problem each support station has a maximum range of service
and a limit on the number of clients that it can support. Clients arrive over
time and must each be assigned to a support station that is not too distant
and that is not fully utilized. So the competitive ratio will be the fraction
(relative to the maximum matching) of the clients that can be guaranteed
support without reassignment.

1.1 Related Results

Karp, Vazirani, and Vazirani [5] give the following results for online bipar-
tite matching, the special case of b-matching where b = 1. It is not hard
to observe that any deterministic algorithm that never refuses to match a
request, if it is possible to do so, is %—competitive, and that no deterministic
algorithm can be better than %—competitive. [5] give a randomized algo-
rithm RANKING whose competitive ratio is 1 — 1 4 o(1) against an oblivious
adversary that must specify the input a priori. RANKING initially selects
uniformly at random a linear order of the server sites, and then matches
each request with the the first available server. [5] show that the compet-
itive ratio of every randomized algorithm is at least 1 — 1 + o(1). Hence,
RANKING is optimally competitive, up to low order terms.

Kao and Tate [4] extended the results of [5] by considering the case where
requests appear in batches. They showed that the results of [5] cannot be
improved even if request appear in batches of size o(n) each.

Grove, Kao, Krishnan and Vitter [1] consider the problem of maintaining
a maximum cardinality matching with a minimal number of reassignments
of servers in the special case that the maximum degree of each r; = 2. [1]
show that the greedy algorithm, that switches assignments along the shortest
augmenting path, is O(logn)-competitive, i.e. the greedy algorithm makes
at most O(logn) times as many reassignments as the optimal number of
reassignments required to maintain a maximum cardinality matching. [1]
show the competitive ratio of every deterministic algorithm for this problem
is Q(logn). [1] also give some results for case that requests may depart.

Results for online weighted matching problems, on graphs where the
edge weights satisfy the triangle inequality, can be found in [2, 3, 6]. In
particular, an optimally competitive deterministic algorithm for the case



b =1 can be found in [2, 6]. In [3], the case of arbitrary b is studied under
the assumption that the online algorithm has more servers per site than
the adversary. Note that the triangle inequality is not generally satisfied by
non-edges in unweighted matching.

1.2 Summary of Results

In this paper, we give the following results for online b-matching. In section
2, we show that the competitive ratio of any deterministic online algorithm
for this problem is at least 1 — (l-I-IW This lower bound holds even if
each request has degree at least at least Z7. In section 3, we give a simple
deterministic algorithm BALANCE with competitive ratio 1 — @ Hence,
BALANCE is optimally competitive, including low order terms. As b grows,
1- @ approaches 1 — % ~ .63. In response to a request 7;, BALANCE
selects an arbitrary server site among all server sites adjacent to r; in G
that have used a minimum number of servers to date. The idea of trying to
balance the number of servers used per site can also be found in an online
matching algorithm given in [3].

As in [3, 7], we also compare the performance of the online algorithm
against the performance of an offline algorithm with fewer servers. This
will give us an idea on how well BALANCE peforms against a less malicious
input given by the adversary. We show that BALANCE, with ab servers, is
1- ﬁ competitive against an offline adversary with b servers per site.
We alsob show that this ratio is optimal for deterministic algorithms. Here
o must be an integer.

2 The Lower Bound

In order to prove the desired lower bound, we first present an adversary.
Throughout our arguments we think of the server site s; as containing b
different servers that handle the requests.

Adversary : Let A be the given deterministic online algorithm.

There are (b4 1)° server sites with exactly b servers per site, and there
will be b- (b + 1)” requests. The requests are partitioned into groups. The
first group Ry consists of the first b(1+ b)b_1 requests, the second group Rj
consists of the next b%(1 + 0)"~2 requests, and in general, R;, i, 1 < i < b,

contains the b*(14-b)"~* requests from request numbered 1—|—Z;;11 b (140)>—7



to the request numbered 2;21 b7(14b6)"=7, inclusive. Ryy1 contains the last
b**1 requests.

The adversary maintains b + 1 sets 51,59,...541 of server sites such
that 5; D 9;4;. Initially, 57 is the set S of all server sites. The first b groups
are handled in the following manner. The adversary makes a request r; € R;
adjacent to those vertices in .5; that have not yet answered a request in R;.
If A uses sy to service r; then s is added to S;41. In Rpyq, each request can
be matched to any server site in Spy1. So the following is the adversary’s
algorithm for requests in R;, 7 < b. Note that for every server site s;, the
set M; is initialized to the empty set. Assuming that the first ¢+ — 1 phase
has been completed, consider the ith phase where 7 < b.

Siz1=10
for each request r; € R; in chronological order
reveal r; and edges from 7; to sites in S; — Siq1.
if A matches r; to a server at site s € 5; — Si41.
Add s; to Siyq.
else { A opts not to match r; }
choose some arbitrary site s; € 9; — S541.
Add si to S;4q and 7; to M.
endfor

Lemma 1 For eachi (1 <i¢<b),
(a) S; D SH—I;

(1) [Sixal = Rl = (1 + )=, and
() |8 = 1Sia| = 6711+ )",

For ease of notation, let us assume that the set Spyo is empty.

Lemma 2 There exists an offline perfect matching that, for each 1 satisfying
1 <0< b+ 1, matches every request in R; to a server site in S; — S;41.

Proof Sketch: Notice that every request in R; can be matched to any server
in sites from 5; — 9;11. It suffices to show that b-].5;—5;41| > | R;| since each
site has b servers. For 1 < ¢ < b this follows from lemma 1. For i = b+ 1 it
follows since [Spy1| = 0%, [Spy2] = 0, and [Ryyq| = b°F! ]

Lemma 3 The number of requests matched by A does not exceed Z?Zl |R;.



Proof Sketch: Consider the sites in Sp1q. Since each site in S34q went
through b phases starting from the set 57, the maximum number of requests

from Rp4q that the servers from sites in Spyq can match is 25k65b+1 | M|
The number of requests in U?ZIRZ' matched by A to servers in S — Sp4q is
St |R| - >s.es | Mi|. The result follows since S 2 Spyy. ]

Theorem 4 The competitive ratio of any deterministic online algorithm for
the b-matching problem is at most 1 — —L—.

(1+3)

Proof Sketch: Let A be the given online algorithm, and apply the adversary
described in this section. Combining lemma 3 and lemma 2 we get that the
competitive ratio is

Z?Zl |RZ| — Z?Zl |RZ|
SR R | + X0 | R

Substituting S=0EN [Ri] = b(b+ 1)°, |Rpys| = b*F, and 0L, |Rs| = b(b +
1)’ — 6"+ yields the claimed bound. ]
S|

Note that in this lower bound each request has degree at least |3_b

Theorem 5 Assume that the adversary has b servers per site while the

online algorithm has ab servers per site, where « is some positive integer.

In this model, the competitive ratio of any deterministic online algorithm for
; 6] — — 1

the b-matching problem is 1 D

Proof Sketch: We modify the adversary in the following way. Let the num-

ber of server sites be (b + 1)“5 and for all 1 < 7 < ab, R; consists of

b(1 + b)ab_Z requests. R,py1 consists of pobtt requests. The rest of the

argument go through as before. [

3 The Algorithm Balance

In this section we present the algorithm BALANCE, and show that the com-
petitive ratio of BALANCE exactly matches the deterministic lower bound
from the previous section.

Algorithm BALANCE: Bach request r; is served by an arbitrary adjacent
server site that has a maximum number of servers remaining.



Definition 6

(a) Let OPT be an arbitrary mazimum cardinality matching.

(b) Let B be the set of request vertices matched in OPT.

(c) Let X be the set of requests in B not matched by BALANCE.

(d) If the request r; is matched by BALANCE to a server site that has already
used 1 — 1 servers, then we say that the rank of r; is 1.

(e) For 1 <i<b, let R; be the set of all requests with rank t.

(f) For 1 <i<b, let M; C R; be the set of all requests with rank i that are
not in B.

(g) For 1 < i < b+ 1, let S; be the set of server sites in the mazimum
matching that service requests in X U (U?:i(Rj - M;)).

Lemma 7 The competitive ratio of BALANCE is

Z?Zl |RZ| — Z?Zl |RZ|
X+ 50 [Ri— My (X =0 (M) + 50 | Ry

Lemma 8 For any i satisfying 2 < ¢ < b+ 1, each s € 5; is malched by
BALANCE to at least i — 1 requests. Hence, |R;_1| > |9i|.

Proof Sketch: First consider the case that s; is matched in OPT with an
r; € X. Then since BALANCE didn’t match r;, it must be the case that
BALANCE has used all the servers from s;. Hence, s is adjacent to a rank
1 — 1 request.

Now suppose that in OPT the site s; matches a request r, € R;, j > .
Notice that r, is also matched by BALANCE to some server at site s;. Note
that it may be the case sp = sp. Since r, can be matched to either s; or
Sp, it must be the case that BALANCE has already matched a j — 1st rank
request to sp. The result then follows since j > 1. [ |

Lemma 9 Forany 1 <i:<b+1,
1 b b
CIEEIEYR SIMVANS VA
i=i i=i

Proof Sketch: This follows from the definition of 5;, the fact that each site
has at most b servers, the fact that M; C R;, and the fact that the R;’s are
disjoint. [ |



Lemma 10 For 0 <i<b,

1 b
b |Sh—iy1] Z(l-l-g) (X~ Z | M)
j=b—it+1

Proof Sketch: We prove this by induction on :. First consider the case
¢ = 0. Since at most b requests can be matched to servers at any site, we
have b - |Sp41] > | X|.

Assume that the induction hypothesis holds for ¢ < k. We now want to
show that it also holds for « = £ + 1. Applying lemma 9 we have

b b
b- |Sb—(k-|—1)-|—1| = |Sp—k| = | X| - Z |M]| + Z |RJ’|
j=b—k j=b—k
Applying lemma 8, that is |R;| > [5;41], we get,
b b k
STARI > D 1Sl =D [Sh-igal
j=b—k 7=b—k =0

Applying the induction hypothesis we get,

b o [Shmit] 2 i1+ 5) - (1X] = i 1M
> Zf:o(l + %)Z ’ (|X| - Z?:b—k-l—l |M]|
= (|X| - Z?:b—k-l—l |M]|) : Zf:o(l + %)Z
> (1X] = Xk M) - o1+ )’

(X = gz [MG]) -0+ (14 §)FF = 1)

)
)

Therefore, we get

b |Sy— kel = (X = oo IMGD 4+ (1X | = Xhmpmp IMG]) - [(1+ )M = 1]
= (L )M (1X] = o | M)

Theorem 11 The competitive ratio of BALANCE is 1 — —L—

(1+5)"



Proof Sketch: Applying lemma 8 and lemma 10, we get

SP IR > S
= 120 |St-ital
1 b—1 IRY b .
> i (L4 ) (X = 25 meign [M])
>3 (IX] = 0oy M) - g (L + 1)
> (1X| = 0 M) - (14 )P = 1)

Applying the bound to the competitive ratio computed in lemma 7, yields
the desired bound. [

We now claim that BALANCE is optimally competitive against an adver-
sary with fewer servers.

Theorem 12 The competitive ratio of BALANCE, with ab servers per site,
against an adversary, with only b servers per site, is 1 — (lﬁ-lw

b
Proof Sketch: The above arguments need to be modified by allowing the
rank of a request to range from 1 to ab. By appropriately extending the
definitions, the same argument will go through. [

4 Conclusion

We show that the algorithm BALANCE is optimal optimally competitive
among deterministic algorithms for the online b-matching problem. The
obvious open question is to find an optimally competitive randomize algo-
rithm. We are currently analyzing the following algorithm that is a mix
of RANKING and BALANCE. Initially, uniformly at random linearly order
the server sites. Then run BALANCE. If there is more than one site with
a minimum number of servers that can handle a request, break the tie by
selecting the highest ranked site.

In the case where the number servers per site vary from site to site,
the competitive factor of BALANCE does not exactly match with that of
the lower bound. Is there a deterministic algorithm with competitive factor

1-— ﬁ where b, is the average number of servers per site used by O PT?
ba
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