
An Optimal Deterministic Algorithm forOnline b-MatchingBala Kalyanasundaram� Kirk R. PruhsyAbstractWe study the online unweighted b-matching problem where at mostb � 1 requests can be matched to any server site. We present a deter-ministic algorithmBalance whose competitive ratio is 1� 1(1+ 1b )b . Weshow that the competitive ratio of every deterministic online algorithmis at least 1 � 1(1+ 1b )b . Hence, Balance is optimally competitive, in-cluding low order terms. For large b, the competitive ratio of Balanceapproaches 1� 1e � :63.1 IntroductionWe consider the natural online version of the well-known b-matching prob-lem on an unweighted bipartite graph G = (S;R;E), where S and R are thevertex partitions and E is the edge set. At the ith unit of time, 1 � i � n,the vertex ri 2 R and all the edges incident to ri are revealed to the onlinealgorithm A. A then must either decline to ever service ri, or irrevocablyselect a site sk adjacent to ri in G to service ri. No server site may beused more than b times. Hence, it may well not be possible to service ev-ery request. The goal of the online algorithm is to maximize the numberof requests that it services. We analyze this problem using the standardcompetitive ratio. For this problem, the competitive ratio of an online algo-rithm A is the supremum over all possible instances I , of the cardinality ofthe matching constructed by A on I divided by the maximum cardinality�kalyan@cs.pitt.edu, Computer Science Dept., University of Pittsburgh, Pittsburgh, PA15260, Supported in part by NSF under grant CCR-9202158.ykirk@cs.pitt.edu, Computer Science Dept., University of Pittsburgh, Pittsburgh, PA15260, Supported in part by NSF under grant CCR-9209283.1



matching in I . Note that the instance I speci�es G as well as the order inwhich the ri's appear.As one example application, consider the problem of assigning clientcomputers to support stations studied by Grove, Kao, Krishnan and Vit-ter [1]. In this problem each support station has a maximum range of serviceand a limit on the number of clients that it can support. Clients arrive overtime and must each be assigned to a support station that is not too distantand that is not fully utilized. So the competitive ratio will be the fraction(relative to the maximum matching) of the clients that can be guaranteedsupport without reassignment.1.1 Related ResultsKarp, Vazirani, and Vazirani [5] give the following results for online bipar-tite matching, the special case of b-matching where b = 1. It is not hardto observe that any deterministic algorithm that never refuses to match arequest, if it is possible to do so, is 12 -competitive, and that no deterministicalgorithm can be better than 12 -competitive. [5] give a randomized algo-rithm Ranking whose competitive ratio is 1� 1e + o(1) against an obliviousadversary that must specify the input a priori. Ranking initially selectsuniformly at random a linear order of the server sites, and then matcheseach request with the the �rst available server. [5] show that the compet-itive ratio of every randomized algorithm is at least 1 � 1e + o(1). Hence,Ranking is optimally competitive, up to low order terms.Kao and Tate [4] extended the results of [5] by considering the case whererequests appear in batches. They showed that the results of [5] cannot beimproved even if request appear in batches of size o(n) each.Grove, Kao, Krishnan and Vitter [1] consider the problem of maintaininga maximum cardinality matching with a minimal number of reassignmentsof servers in the special case that the maximum degree of each ri = 2. [1]show that the greedy algorithm, that switches assignments along the shortestaugmenting path, is O(logn)-competitive, i.e. the greedy algorithm makesat most O(logn) times as many reassignments as the optimal number ofreassignments required to maintain a maximum cardinality matching. [1]show the competitive ratio of every deterministic algorithm for this problemis 
(logn). [1] also give some results for case that requests may depart.Results for online weighted matching problems, on graphs where theedge weights satisfy the triangle inequality, can be found in [2, 3, 6]. Inparticular, an optimally competitive deterministic algorithm for the case2



b = 1 can be found in [2, 6]. In [3], the case of arbitrary b is studied underthe assumption that the online algorithm has more servers per site thanthe adversary. Note that the triangle inequality is not generally satis�ed bynon-edges in unweighted matching.1.2 Summary of ResultsIn this paper, we give the following results for online b-matching. In section2, we show that the competitive ratio of any deterministic online algorithmfor this problem is at least 1 � 1(1+ 1b )b . This lower bound holds even ifeach request has degree at least at least m3b . In section 3, we give a simpledeterministic algorithm Balance with competitive ratio 1� 1(1+ 1b )b . Hence,Balance is optimally competitive, including low order terms. As b grows,1 � 1(1+ 1b )b approaches 1 � 1e � :63. In response to a request ri, Balanceselects an arbitrary server site among all server sites adjacent to ri in Gthat have used a minimum number of servers to date. The idea of trying tobalance the number of servers used per site can also be found in an onlinematching algorithm given in [3].As in [3, 7], we also compare the performance of the online algorithmagainst the performance of an o�ine algorithm with fewer servers. Thiswill give us an idea on how well Balance peforms against a less maliciousinput given by the adversary. We show that Balance, with �b servers, is1� 1(1� 1b )�b competitive against an o�ine adversary with b servers per site.We also show that this ratio is optimal for deterministic algorithms. Here� must be an integer.2 The Lower BoundIn order to prove the desired lower bound, we �rst present an adversary.Throughout our arguments we think of the server site si as containing bdi�erent servers that handle the requests.Adversary : Let A be the given deterministic online algorithm.There are (b+ 1)b server sites with exactly b servers per site, and therewill be b � (b+ 1)b requests. The requests are partitioned into groups. The�rst group R1 consists of the �rst b(1+ b)b�1 requests, the second group R2consists of the next b2(1 + b)b�2 requests, and in general, Ri, i, 1 � i � b,contains the bi(1+b)b�i requests from request numbered 1+Pi�1j=1 bj(1+b)b�j3



to the request numbered Pij=1 bj(1+b)b�j, inclusive. Rb+1 contains the lastbb+1 requests.The adversary maintains b + 1 sets S1; S2; : : :Sb+1 of server sites suchthat Si � Si+i. Initially, S1 is the set S of all server sites. The �rst b groupsare handled in the following manner. The adversary makes a request rj 2 Riadjacent to those vertices in Si that have not yet answered a request in Ri.If A uses sk to service rj then sk is added to Si+1. In Rb+1, each request canbe matched to any server site in Sb+1. So the following is the adversary'salgorithm for requests in Ri, i � b. Note that for every server site sj , theset Mj is initialized to the empty set. Assuming that the �rst i � 1 phasehas been completed, consider the ith phase where i � b.Si+1 = ;for each request rj 2 Ri in chronological orderreveal rj and edges from rj to sites in Si � Si+1.if A matches rj to a server at site sk 2 Si � Si+1.Add sk to Si+1.else f A opts not to match rj gchoose some arbitrary site sk 2 Si � Si+1.Add sk to Si+1 and rj to Mk .endforLemma 1 For each i (1 � i � b),(a) Si � Si+1,(b) jSi+1j = jRij = bi(1 + b)b�i, and(c) jSij � jSi+1j = bi�1(1 + b)b�i,For ease of notation, let us assume that the set Sb+2 is empty.Lemma 2 There exists an o�ine perfect matching that, for each i satisfying1 � i � b+ 1, matches every request in Ri to a server site in Si � Si+1.Proof Sketch: Notice that every request in Ri can be matched to any serverin sites from Si�Si+1. It su�ces to show that b � jSi�Si+1j � jRij since eachsite has b servers. For 1 � i � b this follows from lemma 1. For i = b+ 1 itfollows since jSb+1j = bb, jSb+2j = 0, and jRb+1j = bb+1Lemma 3 The number of requests matched by A does not exceedPbi=1 jRij.4



Proof Sketch: Consider the sites in Sb+1. Since each site in Sb+1 wentthrough b phases starting from the set S1, the maximum number of requestsfrom Rb+1 that the servers from sites in Sb+1 can match is Psk2Sb+1 jMkj.The number of requests in [bi=1Ri matched by A to servers in S � Sb+1 isPbi=1 jRij �Psk2S jMkj. The result follows since S � Sb+1.Theorem 4 The competitive ratio of any deterministic online algorithm forthe b-matching problem is at most 1� 1(1+ 1b )b .Proof Sketch: Let A be the given online algorithm, and apply the adversarydescribed in this section. Combining lemma 3 and lemma 2 we get that thecompetitive ratio is Pbi=1 jRijPb+1i=1 jRij = Pbi=1 jRijjRb+1j+Pbi=1 jRijSubstituting Pb+1i=1 jRij = b(b + 1)b, jRb+1j = bb+1, and Pbi=1 jRij = b(b +1)b � bb+1 yields the claimed bound.Note that in this lower bound each request has degree at least jSj3b .Theorem 5 Assume that the adversary has b servers per site while theonline algorithm has �b servers per site, where � is some positive integer.In this model, the competitive ratio of any deterministic online algorithm forthe b-matching problem is 1� 1(1+ 1b )�b .Proof Sketch: We modify the adversary in the following way. Let the num-ber of server sites be (b + 1)�b and for all 1 � i � �b, Ri consists ofbi(1 + b)�b�i requests. R�b+1 consists of b�b+1 requests. The rest of theargument go through as before.3 The Algorithm BalanceIn this section we present the algorithm Balance, and show that the com-petitive ratio of Balance exactly matches the deterministic lower boundfrom the previous section.Algorithm Balance: Each request rj is served by an arbitrary adjacentserver site that has a maximum number of servers remaining.5



De�nition 6(a) Let OPT be an arbitrary maximum cardinality matching.(b) Let B be the set of request vertices matched in OPT .(c) Let X be the set of requests in B not matched by Balance.(d) If the request rj is matched by Balance to a server site that has alreadyused i� 1 servers, then we say that the rank of rj is i.(e) For 1 � i � b, let Ri be the set of all requests with rank i.(f) For 1 � i � b, let Mi � Ri be the set of all requests with rank i that arenot in B.(g) For 1 � i � b + 1, let Si be the set of server sites in the maximummatching that service requests in X [ ([bj=i(Rj �Mj)).Lemma 7 The competitive ratio of Balance isPbi=1 jRijjX j+Pbi=1 jRi �Mij = Pbi=1 jRij(jX j �Pbi=1 jMij) +Pbi=1 jRijLemma 8 For any i satisfying 2 � i � b + 1, each sk 2 Si is matched byBalance to at least i� 1 requests. Hence, jRi�1j � jSij.Proof Sketch: First consider the case that sk is matched in OPT with anrj 2 X . Then since Balance didn't match rj , it must be the case thatBalance has used all the servers from sk . Hence, sk is adjacent to a ranki� 1 request.Now suppose that in OPT the site sk matches a request ra 2 Rj , j � i.Notice that ra is also matched by Balance to some server at site sb. Notethat it may be the case sk = sb. Since ra can be matched to either sk orsb, it must be the case that Balance has already matched a j � 1st rankrequest to sk . The result then follows since j � i.Lemma 9 For any 1 � i � b+ 1,jSij � 1b (jX j � bXj=i jMj j+ bXj=i jRjj)Proof Sketch: This follows from the de�nition of Si, the fact that each sitehas at most b servers, the fact that Mi � Ri, and the fact that the Ri's aredisjoint. 6



Lemma 10 For 0 � i � b,b � jSb�i+1j � (1 + 1b)i � (jX j � bXj=b�i+1 jMjj)Proof Sketch: We prove this by induction on i. First consider the casei = 0. Since at most b requests can be matched to servers at any site, wehave b � jSb+1j � jX j.Assume that the induction hypothesis holds for i � k. We now want toshow that it also holds for i = k + 1. Applying lemma 9 we haveb � jSb�(k+1)+1j = jSb�kj = jX j � bXj=b�k jMj j+ bXj=b�k jRjjApplying lemma 8, that is jRj j � jSj+1j, we get,bXj=b�k jRj j � bXj=b�k jSj+1j = kXi=0 jSb�i+1jApplying the induction hypothesis we get,b �Pki=0 jSb�i+1j �Pki=0(1 + 1b )i � (jX j �Pbj=b�i+1 jMj j)�Pki=0(1 + 1b )i � (jX j �Pbj=b�k+1 jMj j)= (jX j �Pbj=b�k+1 jMj j) �Pki=0(1 + 1b )i� (jX j �Pbj=b�k jMj j) �Pki=0(1 + 1b )i= (jX j �Pbj=b�k jMj j) � b � ((1 + 1b )k+1 � 1)Therefore, we getb � jSb�(k+1)+1j � (jX j �Pbj=b�k jMj j) + (jX j �Pbj=b�k jMj j) � [(1 + 1b )k+1 � 1]= (1 + 1b )k+1 � (jX j �Pbj=b�k jMj j)Theorem 11 The competitive ratio of Balance is 1� 1(1+ 1b )b .7



Proof Sketch: Applying lemma 8 and lemma 10, we getPbi=1 jRij �Pb+1i=2 jSij=Pb�1i=0 jSb�i+1j� 1b Pb�1i=0(1 + 1b )i(jX j �Pbj=b�i+1 jMj j)� 1b � (jX j �Pbj=1 jMj j) �Pb�1i=0(1 + 1b )i� (jX j �Pbj=1 jMj j) � ((1 + 1b )b � 1)Applying the bound to the competitive ratio computed in lemma 7, yieldsthe desired bound.We now claim that Balance is optimally competitive against an adver-sary with fewer servers.Theorem 12 The competitive ratio of Balance, with �b servers per site,against an adversary, with only b servers per site, is 1� 1(1+ 1b )�b .Proof Sketch: The above arguments need to be modi�ed by allowing therank of a request to range from 1 to �b. By appropriately extending thede�nitions, the same argument will go through.4 ConclusionWe show that the algorithm Balance is optimal optimally competitiveamong deterministic algorithms for the online b-matching problem. Theobvious open question is to �nd an optimally competitive randomize algo-rithm. We are currently analyzing the following algorithm that is a mixof Ranking and Balance. Initially, uniformly at random linearly orderthe server sites. Then run Balance. If there is more than one site witha minimum number of servers that can handle a request, break the tie byselecting the highest ranked site.In the case where the number servers per site vary from site to site,the competitive factor of Balance does not exactly match with that ofthe lower bound. Is there a deterministic algorithm with competitive factor1� 1(1+ 1ba )ba where ba is the average number of servers per site used by OPT?8
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