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1 Definitions and Constraints

The variable xe is 0 if the edge is not in a considered matching, and 1 if it
is.

We examine two contraints, and investigate if they’re enough for a linear
program to give us a matching. We want to avoid adding a constraint that
specifies that xe is integral, as this can turn our LP into which much harder
to solve.

1.
∑

e∈δ(v)
xe ≤ 1 ∀v ∈ V

2. xe ≥ 0

We let χM
′

= (e1, e2, ..., em), where ei = 1 if it is in a M ′ and 0 otherwise.
We will consider optimization over the matching polytope, for normal

matchings and perfect matchings. The matching polytope is defined as:

• M = conv{χM ′ |M ′ is a matching }

• PM = conv{χM ′ |M ′ is a perfect matching }

2 Facts About the Matching Polytope

Let P be the feasible region defined by 1 and 2.
We now compare M and P.

Claim. M ⊆ P

1



Proof. Any point in M can be written as
∑
i
λiχi, with

∑
i
λi = 1. Each

χi can have at each index at most one edge, so the sum cannot be greater
than 1. This satisifies condition 1. Condition 2 is also clearly satisfied, as χ
contains only 0s and 1s.

Figure 1: The point corresponding to this graph cannot be in M.

Claim. P 6⊆M

Proof. A simple counter-example is the usual triangle graph (the complete
graph on three edges). The vector (1/2, 1/2, 1/2) ∈ P but is not in M.

3 Bipartite Case

Claim. P ⊆M when G is bipartite

Proof. Assume by way of contradiction that the vertices of P are not inte-
gral. Let x be a vertex with at least one non-integral component. Note that
“vertex” here refers to vertex of the polytope P , not vertex of the graph.

Let G′ = (V,Ex) be the graph defined on the non-integral edges from x.
G′ is bipartite, so all cycles in G′ are of even length.

Case 1. Assume that G′ has a cycle.

All edges in this cycle are fractional, as all edges of G′ are fracitonal. ∃ε
s.t. ε = mine{xe, 1−xe} where xe are the weights on the edges in the cycle.

Arbitrarily pick an edge on the cycle and place it in a set A. Continue
around the cycle, putting the next edge in a set B. We continue in this
manner, alternating between putting edges in A and B. Since the cycle
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is even, this will result in a partition of the edges, where any A edge is
surrounded on either side by two B edges, and vice versa.

Let αe = εe if e is in the cycle and in A, −εe if e is in the cycle and
in B, and 0 otherwise. Basically, we’re alternating between adding and
subtracting ε from the weights on the edges in the cycle.

Figure 2: We partition the cycle into two sets.

Consider the two points of P , z1 = x + α and z2 = x − α. Then
x = 0.5z1 + 0.5z2, meaning x is a linear combination of two verticies in P ,
meaning x cannot be a vertex of P . Thus, if G′ has a cycle, P cannot have
any non-integral vertices.

Figure 3: Adding and subtracting epsilon gives two feasible points in P. The
linear combination of these points cannot be a vertex.

Case 2. Assume that G′ does not have a cycle.
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Choose a maximal path in G′, a path with endpoints of degree 1. We can
use a similar argument to the previous case to show that x is not a vertex of
P . We divide the edges of the path into two different sets, where no edge is
adjacent to an edge in its own set. We can construct two vectors by adding
or subtracting some amount. A linear combination of these two vectors will
be x, showing that x cannot be a vertex.

Therefore, the vertices of P must be integral.

4 Fractional Perfect Matching Theorem

Let the region FPM(G) be defined by the two constraints:

1.
∑

e∈δ(v)
xe = 1 ∀v ∈ V

2. xe ≥ 0

The only difference between these are the previous constraints is that we
use equal instead of less than or equal in the first constraint.

Theorem 1. x ∈ FPM(G) is a vertex of FPM(G) ⇐⇒ xe ∈ {0, 1/2, 1}
∀e ∈ E and the edges for which xe = 1/2 form node-disjoint odd-cycles

Proof. First, we will prove in the ⇐ direction.
We will show that we are intersecting the region with a half plane, and

that the size of the intersection will be just one point. This can only occur
at a vertex.

Figure 4: The half plane intersects the polytope at one point, meaning the
intersection has to be a vertex.

Suppose we are given an x′ that is half-integral. Define w = −1 if x′e = 0,
and w = 0 if x′e > 0. Let S = FPM(G) ∩ {y : wT y = 0}
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Claim. x′ is the only point in S.

Assume by way of contradiction that x′′ 6= x is in S. Let E1 be the edges
for which x′e > 0. Likewise, let Ē1 be the edges for which x′e = 0.

If x′′e ∈ S, then x′′e = 0 ∀e ∈ Ē, as x′′e ∈ {y : wT y = 0} For any e in
a cycle, x′′ must also have x′′e = x′e = 1/2. Any other edges cannot be in
cycles, and thus must have 1, same as x′. Thus, x′′e = x′e.

Now, we will prove in the ⇒ direction
Suppose x is a vertex of FPM(G). We will consider a transform from

G to G′. If u and v are nodes in G that share an edge, then in G′, let us
have nodes u′, u′′, v′, and v′′. In G′, nodes u′ and v′′ share an edge, and
nodes u′′ and v′ share an edge. Thus, if an edge e is in G, it will have two
corresponding edges e′ and e′′ in G′. Note that xe = 0.5(xe′ + xe′′).

Note also that G′ is bipartite. A node with one prime only has neighbors
that have double primes, and vice versa. Since G′ is bipartite, that means
its matching polytope has integral verticies, as we prove previously.

If it’s an odd cycle, exactly one of xe′ and xe′′ will be 1. Because xe =
0.5(xe′ + xe′′), xe = 1/2. It’s easy to show that if xe is 1/2, it must be in an
odd cycle.

This completes the proof.
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