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1 Proof that P (G) = PM

Let G be some graph with a perfect matching. We consider the perfect matching polytpe
P (G) in Class 2 well as the convex hull of all perfect matching characteristic vectors be
PM(G) = conv { χM ′ |M ′ is a perfect matching }. To the perfect matching polytope
P (G), which was defined last class as encompassing the constraints xe ≥ 0 ∀e ∈ E(G),∑
δ(v) xe = 1∀ v ∈ V (G), we add exponencially many cut-conditions:

∑
δ(S) xe ≥ 1 ∀

sets S which comprise a subset of the vertecies of G and have |S| > 3 odd. From now
on, we designate this new set as P (G). We show below that P (G) = PM step by step.

PM(G) ⊂ P (G) One direction is easy. If we have an x ∈ PM(G) then any of the perfect matchings
which are in the expanded expression for x are in the set P by definition and so
since the constraints which define P (G) are linear (specifically, convex) we have
that x is infact in P (G) also.

P (G) ⊂ PM(G) Next, we show that the reverse is also true. To this end, assume not and let G be
the smallest graph (in terms of number of edges) which contradictions the above
assertion so that there is some x ∈ P (G) and x /∈ PM(G). Sequencially, we derive
some conditions that x must satisfy and arrive at a contradiction.

(1) We must have 0 < xe < 1 for else we could delete the edges which correspond
to xe = 0 or xe = 1 and thus get a smaller conterexample, contradicting the
minimality of G.

(2) Notice G cannot have any isolated vertecies for if it did then we would not
have a perfect matching at all and we assume that we do. Also, notice that G
cannot have any vertecies of degree 1 for if it did then we would have xe = 1
on the edge into that vertex v and then get back to case (1) above.

(3) Notice that G must have a vertex of degree more than 2 for if not then we a
contradiction. To see this, assume that all vertecies have degree 2 and then
notice that we can decompose G into a bunch of cycles (a standard result).
Consider some cycle. If it has odd length, then we have we violate the cut
condition and hence we are not in P (G). If it is even, then the edges will be of
value a, 1− a, a, 1− a, ... for some 0 < a < 1 and hence the flow on that cycle
is a convex combination of two perfect matchings. Hence, since both cases led
to a problem, we must have that ∃ v such that deg(v) > 2.

(4) Since the sum of the degrees of a graph is 2|E| and all degrees are more than
1 we have |E| > |V |. Now look back at the LP. At a vertex of the LP, we will
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have that the number of tight constraints is equal to the number of variables
and thus the number of tight constraints is > |V | so we must have that there
is some set of verticies W with |W | odd so that

∑
δ(W ) xe = 1 (we have |V |

vertex constrains, and so since we must have |E| active and |E| > |V | we must
have a cut constaint active; also, by (1) we have xe > 0 so it really has to be
a cut constraint).

(5) Now if x ∈ P (G) then there is a vertex (basic feasible solution) in P (G) that
has the above property and x is just fractional. Notice that x can’t be integral
since then we’d get a smaller counterexample.

(6) Now look at the contraction of G; specifically contract W and W to a pseudon-
odes w′ and w′′ in the usual way and consider the two graphs thus pro-
duced. Parallel edges now give an additive effect. Label G′ = c(G/W ) and
G′′ = c(G/W ) be the two contracted graphs.

(7) By the minimality of G we must have that P and PM are the same for both
G′ and G′′ and hence if x′ and x′′ is the flow is G′ and G′′ respectively then we
can express each of these as a convex combination of perfect matchings in their
own set. Next, observe that x is rational since it is a basic feasible solution
of P (G) and, because of this, the same is true of x′ ∈ P (G′) and x′′ ∈ P (G′′).
Due to rationality, we have that there is some integer k and perfect matchings

M
′
1,M

′
2, ...,M

′
k of G′ such that x′ = 1

k

∑k
i=1 χ

M ′
i

i and similarly there are perfect

matchings M
′′
1 ,M

′′
2 , ...,M

′′
k of G′′ such that x′′ = 1

k

∑k
i=1 χ

M
′′
i

i .

(8) Now let e1, ..., eh be the edges which are in the cut δ(W ). Since we have
that x′(δ(w′)) = 1 and w′ is in every perfect matching, we have that ej is
in exactly kx′(ej) = kx(ej) matchings of M

′
1, ...,M

′
k and similarly ej is in

exactly kx(ej) matchings M
′′
1 , ...,M

′′
k . Note now that we have

∑n
j=1 kx(ej) = k

and moreover, exactly one of e1, ..., eh can be in M
′
i and M

′′
i . We can thus

assume by renumbering if needed that M
′
i and M

′′
i share exactly one edge

from e1, ..., eh. Then, we have that Mi = M
′
i ∪M

′′
i is a perfect matching of G.

Hence, we have that x = 1
k

∑k
i=1 χ

Mi implies that x is in PM and we have the
contradiction, as needed.
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