
IEOR 8100: Matchings Sep 20, 2012

Hopcroft-Karp Bipartite Matching Algorithm and Hall’s Theorem

Instructor: Cliff Stein Scribe: Chun Ye

1 Hopcroft-Karp Algorithm

Recall that the basic bipartite matching algorithm repeatedly finds an augmenting path and performs

the operation M
⊕
E(P), where P is the augmenting path found at each iteration, until the graph has

no more augmenting paths. The running time of the algorithm is O(mn), as an augmenting paths can

be found by doing a breath first search and there are at most n
2 augmenting paths with respect to the

empty matching in any graph. In this lecture, we study a faster bipartite matching algorithm originally

proposed by John Hopcraft and Richard Karp in 1973. Their algorithm runs in O(
√
nm) time.

Consider the following subroutine of the algorithm.

1: Start with a non-maximum matching M .

2: Find {P1, . . . , Pk} a maximal set of vertex disjoint shortest augmenting paths with respect to M .

3: Set M = M
⊕

(E(P1) ∪ E(P2) ∪ . . . ∪ E(Pk)).

Proposition 1. The above subroutine correctly computes a matching with a larger size.

Proof. The suffices to show that for all 2 ≤ i ≤ k, Pi is an augmenting path with respect to the match-

ing M
⊕
E(P1)

⊕
E(P2) . . .

⊕
E(Pi−1). This is because since P1, P2 . . . Pi are vertex disjoint, performing

M
⊕
E(P1)

⊕
E(P2) . . .

⊕
E(Pi−1) does not modify the part of the graph where Pi augments the match-

ing M .

We can find a maximal set of vertex disjoint shortest augmenting paths with respect to M in O(m) time.

To do so, we first perform a modified breath first search: let G(A,B) be the underlying bipartite graph,

let S ⊆ A be the set of unmatched vertices in A. The algorithm does a simultaneous breath first search

starting at every vertex v ∈ S that alternates between non-matching and matching edges. One can do so

by adding a source node, having an edge between the source and each vertex in S, and running a BFS

from the source. We stop the BFS at the kth level where k + 1 is the smallest distance from the source

to where we hit a free vertex in B. Let X denote the set of all unmatched vertices in B that we found

at the kth level. We then perform the following greedy algorithm: for every vertex in u ∈ X, we trace

back along its predecessor vertices until we hit a vertex v ∈ S. If v is unmarked, then we record the path

betweeen u and v and mark the vertex v as taken.

Next, we prove the following proposition, which allows us to meaure how much progress we have made

after one iteration of the subroutine.

Proposition 2. Let l be the length of a shortest augmenting path with respect to M . Let P1, . . . , Pk be a

maximal set of vertex disjoint shortest augmenting paths. Let M ′ = M
⊕

(E(P1) ∪ . . . ∪ E(Pk)). Let P

be a shortest augmenting path with respect to M ′, then |P | > l.

1

Proof. We consider two cases.

Case 1: P is vertex disjoint from P1, . . . , Pk.

It is clear that here |P | > l, otherwise it would contradict the fact that {P1, . . . , Pk} is a maximal set of

vertex disjoint shortest augmenting paths.

Case 2: P is not vertex disjoint from P1, . . . , Pk. We present two proofs. Here is the first proof. Let

P = p1p2 . . . pm. Since P is not vertex disjoint from P1, . . . , Pk, it must share a M ′ matching edge with

some path Pi = pi1p
i
2 . . . p

i
l. Let (u, v) be such an edge with u having a smaller index than v in P . Let

R1 denote the subpath of P from p1 to u and R2 denote the subpath of P from v to pm. Let Q1 denote

the subpath of Pi from pi1 to v and Q2 denote the subpath of Pi from u to pil. Notice that Q1 and Q2 are

alternating paths with respect to M . Although R1 and R2 are alternating paths with respect to M ′, they

are not necessarily alternating paths with respect to M . If R1 is an alternating path w.r.t to M , then

R1∪Q2 is an augmenting path w.r.t. M . If R1 is not an alternating path w.r.t. M , then in order for it to

become an alternating path w.r.t. M ′, it must share a M nonmatching edge with some Pj and once we

augment the path Pj , we change the nonmatching edge to a matching edge. Consequently, in this case,

R1 must contain at least one free vertex w.r.t M (that is not p1). Let r denote the free vertex closest to u

and let P ′ be the path from r to u, then P ′∪Q2 is an augmenting path w.r.t M . Similarly, we can always

find a subpath Q′ of R2 with v as one of the endpoints such that Q1 ∪ Q′ is an augmenting path w.r.t

M . Since P ′ ∪Q2 and Q1 ∪Q′ are augmenting paths w.r.t M , we have that |P ′ ∪Q2| = |P ′|+ |Q2| ≥ l

and |Q1 ∪ Q′| = |Q1| + |Q′| ≥ l. On the other hand, since Pi is a shortest augmenting path w.r.t. M ,

we have that |Q1| + |Q2| = l − 1. Consequently, we get that |P ′| + |Q′| ≥ l + 1, which implies that

|P | = |R1|+ |R2|+ 1 ≥ |P ′|+ |Q′|+ 1 ≥ l+ 2. The diagram below illustrates an example of the argument

above.

Here is the alternate proof. Since M ′ = M
⊕

(E(P1)∪. . .∪E(Pk)), we have that M
⊕
M ′ = (E(P1)∪. . .∪

2

E(Pk)), which implies that M
⊕
M ′

⊕
E(P) = (E(P1) ∪ . . . ∪ E(Pk)

⊕
E(P). Consider the connected

components of a subgraph H of G whose edge set is M
⊕

(M ′
⊕
E(P)). Since |M ′

⊕
E(P)|−|M | = k+1,

there are at least k + 1 components of H that uses more edges from M ′
⊕
E(P) than it uses edges from

M . Each of these components corresponds to an augmenting path with respect to M . Consequently, H

contains at least k + 1 vertex disjoint augmenting paths with respect to M , each of which has length

at least l. Hence, we conclude that |M
⊕
M ′

⊕
E(P)| = |(E(P1) ∪ . . . ∪ E(Pk))

⊕
E(P)| ≥ (k + 1)l.

Since P1, . . . , Pk are vertex disjoint, they contribute at least kl distinct edges, which means that P must

contribute at least l edges of its own in order for the inequality |(E(P1)∪ . . .∪E(Pk))
⊕
E(P)| ≥ (k+ 1)l

to hold. Now, since P is not vertex disjoint from P1, . . . , Pk, it must share a matching edge with some

path Pi with respect to the matching M ′. Consequently, we may conclude that |P | > l.

Now we may consider the main algorithm.

Algorithm 1 Hopcroft-Karp Algorithm

Start with M = φ.
2: while M is not a maximum matching do

Find {P1, . . . , Pk} a maximal set of vertex disjoint shortest augmenting paths with respect to M .
4: Set M = M

⊕
(E(P1) ∪ E(P2) ∪ . . . ∪ E(Pk)).

end while

Proposition 3. The Hopcroft-Karp Algorithm runs in O(
√
nm) time.

Proof. Since each iteration of the algorithm takes O(m) as argued before, it suffices to show that the

algorithm terminates after O(
√
n) iterations. After

√
n iterations, either the algorithm has terminated

because we have found a maximum matching, or we have obtained a matching M where the shortest

augmenting path with respect to M has length at least
√
n+ 1. Let M ′ be a maximum matching of G,

then a subgraph H of G whose edge set is M
⊕
M ′ can be decomposed into components containing at

least |M ′| − |M | vertex disjoint augmenting paths with respect to M . Since each of those augmenting

paths has length at least
√
n + 1 and E(H) ≤ n, we get that |M ′| − |M | ≤ n

(
√
n+1)

<
√
n. Hence, after

another
√
n iterations, the algorithm is guaranteed to find a maximum matching if it hasn’t already

terminated after the first
√
n iterations.

2 Hall’s Theorem

Theorem 4. Given a bipartite graph G(X,Y) where |X| = |Y |. G has a perfect matching if and only if

for all A ⊆ X, |δ(A)| ≥ |A|.

Proof. −→ If there exists A ⊆ X such that |δ(A)| < |A|, then one cannot match all the vertices in A,

which means that G cannot have a perfect matching.

←−We prove the contrapositive using flows. First we add a source node s and a sink node t to the graph

G and draw an edge from s to each of the vertices in X with capacity 1 and draw an edge from each of

the vertices in Y to t with capacity 1. We set the capacities of the edges from X to Y to infinity. Then

we run a max flow algorithm to compute a max flow of the modified network. It is clear from the set up

that any max flow of the network corresponds to a maximum matching of G. After we have found a max

flow f , let A′ be a set of vertices that is reachable from s in the residual network with respect to f and

3

let B′ = G\A′, then from the max-flow min-cut theorem, we have that (A′, B′) forms a min cut.

Now, assume G has no perfect matching, then

|f | < n, which means that cap(A′, B′) < n. We claim that cap(A′, B′) = |X ∩ B′| + |Y ∩ A′|. This is

because there is no edge crossing the min cut from X to Y in the residual network since an edge from

X to Y has infinite capacity. Hence, all edges crossing the cut from X to Y are either from s to some

vertex of X not reachable from s in the residual network, or from some vertex of Y reachable from s in

the residual network to t. The size of the first set of edges is |X ∩B′| and that of the second is |Y ∩A′|.
Let A = X ∩ A′, then |X ∩ B′| = n − |A|. Notice that there can be no edges from X ∩ A′ to Y ∩ B′
because we cannot allow any infinite capacity edge to cross the min cut from X to Y (otherwise the cut

capacity would be infinity). Hence, we may conclude that δ(A) ⊆ Y ∩A′. Putting it altogether, we have

that n > cap(A′, B′) = |X ∩B′|+ |Y ∩A′| ≥ n− |A|+ |δ(A)|, which means that |A| > |δ(A)|. Hence, we

have explicitly found a A ⊆ X where |A| > |δ(A)| if G has no perfect matching.

4

